| 研究生: |
陸正育 Lu, Cheng-Yu |
|---|---|
| 論文名稱: |
基於車載網路技術的協同式號誌控制系統用於區域路網以最佳化CO2排放與燃油消耗 A VANET-based Coordinated Signal Control System in a Local Network for Minimizing CO2 Emissions and Fuel Consumption |
| 指導教授: |
李威勳
Lee, Wei-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 車載網路 、適應性號誌控制系統 、燃油消耗 、二氧化碳排放 |
| 外文關鍵詞: | VANET, Adaptive Traffic Signal Control System, Fuel consumption, CO2 emission |
| 相關次數: | 點閱:162 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球暖化逐漸受到各國重視,如何減少溫室氣體的排放已經成為一項挑戰。許多的溫室氣體產生自運輸系統,其中又一大部分來自於效率不彰的號誌控制所導致的交通壅塞現象。一個合適的交通號誌控制能夠降低燃油消耗與溫室氣體排放,進而做到環境保護。
本論文研究重點放在降低燃油消耗與溫室氣體排放。為了達成這項目的,需要提出一個適應性號誌控制系統,並且該系統能夠接近真實的駕駛者心理,如:穩定的時相時間以及固定的時相順序,確保駕駛者的安全。
本研究提出一個車載網路技術為基礎的協同式適應性號誌控制系統(VCSC)。VCSC系統內含有PUD演算法。PUD演算法透過V2R與R2R方式所蒐集的資料來決策最佳號誌時制計劃。並透過Rockwell Arena模擬軟體實作並測量VCSC系統的效能。
經過模擬實驗後,於3*3的路網情況下,實驗結果顯示燃油消耗有效降低,然而卻造成較差的CO2排放。在1*3的路網情境,VCSC系統展現有效地降低了燃油消耗與CO2排放。
As the global warming issue is gaining more and more attentions, how to reduce the emissions of greenhouse gas is a big challenge. Lot of greenhouse gas is coming from transportation system and most of it is coming from a congested traffic situation due to an inefficient traffic signal control. A suitable traffic signal control can reduce the fuel consumption and greenhouse emissions.
This paper focuses on reduce both fuel consumption and emissions of intersection. In order to reduce vehicles’ fuel consumption and emissions, an adaptive traffic signal control system which is closer to drivers’ psychology, such as stable green time and fixed phase sequence, has been proposed.
In this paper, a VANET-based coordinated signal control model which focuses on the reduction of fuel consumption and CO2 emissions is proposed. And used Rockwell Arena simulation software to measure our VCSC system’s performance.
After the experiment, in the case of 3*3 network, the simulation result shows that fuel consumption reduced better than FPA(Fairness Provisioning Algorithm). However, the CO2 emission performance is not satisfactory. In the case of 1*3 network, the simulation result shows that the proposed VCSC system is outperformed to the traditional coordination signal control models, both in fuel consumption and CO2 emission.
1. Ahn, K., Rakha, H., & Trani, A. (2004). Microframework for modeling of high-emitting vehicles. Energy and Environmental Concerns 2004(1880), 39-49.
2. Alsabaan, M., Naik, K., Khalifa, T., & Nayak, A. (2010, 13-16 July 2010). Vehicular networks for reduction of fuel consumption and CO2 emission. Paper presented at the Industrial Informatics (INDIN), 2010 8th IEEE International Conference on.
3. Barth, M., & Boriboonsomsin, K. (2010). Traffic congestion and greenhouse gases. TR News, 268.
4. Binbin, Z., Jiannong, C., Xiaoqin, Z., & Hejun, W. (2010, 6-9 Sept. 2010). Adaptive Traffic Light Control in Wireless Sensor Network-Based Intelligent Transportation System. Paper presented at the Vehicular Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd.
5. Boukerche, A., Oliveira, H. A. B. F., Nakamura, E. F., & Loureiro, A. A. F. (2008). Vehicular Ad Hoc Networks: A new challenge for localization-based systems. Computer Communications, 31(12), 2838-2849. doi: DOI 10.1016/j.comcom.2007.12.004
6. C. Lien-Wu, P. Sharma, and T. Yu-Chee, "Dynamic Traffic Control with Fairness and Throughput Optimization Using Vehicular Communications," Selected Areas in Communications, IEEE Journal on, vol. 31, pp. 504-512, 2013.
7. Chang, H.-J., & Park, G.-T. (2012). A study on traffic signal control at signalized intersections in vehicular ad hoc networks. Ad Hoc Networks(0). doi: 10.1016/j.adhoc.2012.02.013
8. Chunxiao, L., & Shimamoto, S. (2012). An Open Traffic Light Control Model for Reducing Vehicles' CO2 Emissions Based on ETC Vehicles. Vehicular Technology, IEEE Transactions on, 61(1), 97-110. doi: 10.1109/tvt.2011.2168836
9. Dargay, J., Gately, D., & Sommer, M. (2007). Vehicle ownership and income growth, worldwide: 1960-2030. Energy Journal, 28(4), 143-170.
10. Frey, H. C., Unal, A., Rouphail, N. M., & Colyar, J. D. (2003). On-road measurement of vehicle tailpipe emissions using a portable instrument. Journal of the Air & Waste Management Association, 53(8), 992-1002.
11. Gokhale, S. (2012). Optimizing route choice for lowest fuel on vehicular-exhaust emissions at traffic junctions. Transportation Research Part D-Transport and Environment, 17(1), 21-27. doi: DOI 10.1016/j.trd.2011.08.006
12. Gordon, R., Reiss, R., Haenel, H., Case, E., French, R., Mohaddes, A., & R.Wolcott. (2005). Traffic Control Systems Handbook. Department of Transportation, Federal Highway Administration, Washington, DC.
13. Gradinescu, V., Gorgorin, C., Diaconescu, R., Cristea, V., & Iftode, L. (2007). Adaptive traffic lights using car-to-car communication. 2007 Ieee 65th Vehicular Technology Conference, Vols 1-6, 21-25. doi: Doi 10.1109/Vetecs.2007.17
14. IEA, CO2 Emissions from Fuel Combustion 2012 - Highlights (2012 edition), Luxembourg, October 2012.
15. J. Dargay, D. Gately, and M. Sommer, “Vehicle Ownership and Income Growth, Worldwide: 1960-2030,” Energy Journal, vol. 28, no. 4, 2007.
16. Jin-Lih Shieh, Cheng-Yu Lu Yu and Wei-Hsun Lee, “VANET-based Coordinated Signal Control in a Local Network for Minimizing CO2 Emissions and Fuel Consumption”, in Proc. of 9th International Conference on Computing Technology and Information Management (NCM, ICNIT), Korea, Jun. 2013.
17. Klein, L. A., Mills, M. K., & Gibson, D. R. P. (2006). Traffic Detector Handbook:Third Edition—Volume I.
18. Maslekar, N., Boussedjra, M., Mouzna, J., & Labiod, H. (2011, 15-18 May 2011). VANET Based Adaptive Traffic Signal Control. Paper presented at the Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd.
19. Miller, J. (2008). Vehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture. 2008 Ieee Intelligent Vehicles Symposium, Vols 1-3, 1062-1067.
20. Motoda, Y., & Taniguchi, M. (2003). A study on saving fuel by idling stops while driving vehicles. Proceedings of the Eastern Asia Society for Transportation Studies, Vol 4, Nos 1 and 2, 4(1-2), 1335-1344.
21. OECD/ITF, Reducing Transport Greenhouse Gas Emissions: Trends and Data 2010. International transport forum, Leipzig, Germany, 2010.
22. Papadimitratos, P., de La Fortelle, A., Evenssen, K., Brignolo, R., & Cosenza, S. (2009). Vehicular Communication Systems: Enabling Technologies, Applications, and Future Outlook on Intelligent Transportation. Ieee Communications Magazine, 47(11), 84-95. doi: Doi 10.1109/Mcom.2009.5307471
23. Rakha, H., Ahn, K., & Trani, A. (2003). Comparison of MOBILE5a, MOBILE6, VT-MICRO, and CMEM models for estimating hot-stabilized light-duty gasoline vehicle emissions. Canadian Journal of Civil Engineering, 30(6), 1010-1021. doi: Doi 10.1139/L03-017
24. Senthilkumar, P., M. Baskar, et al. (2011). "A Study on Mobile Ad-Hock Networks (MANETS)." JMS(1).
25. Stanica, R., Chaput, E., & Beylot, A. L. (2011). Simulation of vehicular ad-hoc networks: Challenges, review of tools and recommendations. Computer Networks, 55(14), 3179-3188. doi: DOI 10.1016/j.comnet.2011.05.007
26. Uzcategui, R. A., & Acosta-Marum, G. (2009). Wave: A Tutorial. Ieee Communications Magazine, 47(5), 126-133.
27. Wei-Hsun Lee, Yan-Cheng Lai and Pei-Yin Chen, “Decision-Tree based Green Driving Suggestion System for Carbon Emission Reduction”, in Proc. of IEEE 12th International Conference on Intelligent Transport Systems Telecommunications, Taipei, Taiwan, Nov. 2012.
28. Wischhof, L., Ebner, A., & Rohling, H. (2005). Information dissemination in self-organizing intervehicle networks. Ieee Transactions on Intelligent Transportation Systems, 6(1), 90-101. doi: Doi 10.1109/Tits.2004.8420407
29. 林國顯等 (2010), “能源消耗、污染排放推估模式與永續運輸模式之整合應用”, 交通部運輸研究所(計畫編號:98-PDB001)
30. 蔡輝昇、羅彬榮(1986), “國內交叉路口車隊紓解時間與車隊間距之特性分析”, 運輸規劃季刊, 第15卷, 第4期, 頁545-561
校內:2020-08-07公開