| 研究生: |
林孟佑 Lin, Meng-Yu |
|---|---|
| 論文名稱: |
轉爐石應用於製作無機聚合物之研究 BOF-Slag Utilized as a Raw Material in the Production of Inorganic Polymers |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 轉爐石 、無機聚合物 、養護 |
| 外文關鍵詞: | BOF-slag, Inorganic polymers, Curing |
| 相關次數: | 點閱:95 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
轉爐石乃是一貫作業煉鋼廠之主要副產物,每年中鋼約產出150萬公噸,由於轉爐石含有游離氧化鈣,吸水後形成氫氧化鈣,導致轉爐石體積膨脹,而且浸泡後之溶液pH值較高,應用於混凝土結構物或堆置掩埋處理,皆將引起耐久性及環境相容性之疑慮。由於傳統卜作嵐水泥之製作過程,高耗能且排放大量二氧化碳,可能造成地球暖化及環境生態之衝擊,故亟需研發新型無機聚合物以取代卜作嵐水泥。一般無機聚合物之製作程序,需添加鹼金屬氫氧化物及鹼金屬矽酸鹽混合溶液共同激發,雖然可製成具高抗壓強度之膠結材,但所選用鹼金屬氫氧化物及鹼金屬矽酸鹽激發劑之成本昂貴。本研究利用轉爐石浸泡於水中形成高pH值鹼液之特性,於不添加其他任何鹼激發劑情況下,激發富含鋁矽酸鹽礦物之廢棄物,經由適當攪拌條件,所製成轉爐石無機聚合膠結材試體之最佳抗壓強度可高達50MPa以上,另外,經由適當養護條件,所製成轉爐石無機聚合砂漿試體之最佳抗壓強度則可達45MPa。最後,藉由一系列試驗結果,探討轉爐石溶出之鹼量、攪拌條件及試體養護條件等,對所製成轉爐石無機聚合物試體抗壓強度及耐久性之影響。
The annual amount of BOF slag, which is the by-product of an integrated steel work, can reach about 1.5 million tons in Taiwan. Free-CaO contained in BOF slag usually reacts with water to form calcium hydroxide Ca(OH)2, leading to the expansion of its volume, the formation of microcracks in a brittle binder and the possible failure of a structural component. Meanwhile, the OH- concentration of the solution containing BOF slag is high and could be harmful to the surrounding environment. As a result, the durability and environmental compatibility problems caused by the use of BOF slag in a concrete structure and landfill are of concern. At the same time, a novel construction material for the replacement of traditional Portland cement with high energy consumption and carbon dioxide emission in manufacturing is needed and urgent. In the study, BOF slag is used as a raw material in the production of inorganic polymers with low energy consumption and carbon dioxide emission. The solution of BOF slag with the characteristic of a high pH value, utilized as an activator without the introduction of sodium hydroxide and sodium silicate, was mixed with some aluminosilicate minerals to produce alkali-activated inorganic polymers. The dissolution of aluminium and silicon ions from aluminosilicate minerals can be accelerated and becomes complete in a short time by mixing them with the activator without sodium hydroxide and sodium silicate at high temperatures for various durations. The inorganic slurry after vigorously stirring was then cured at high temperatures for lasting different time to enhance the polycondensation reaction and the resulting microstructure and properties of alkali-activated inorganic polymers. It is found that the compressive strengths of alkali-activated BOF-slag inorganic binders and mortars could reach up to 50 and 45MPa, respectively. Also, the expansion of the alkali-activated inorganic polymers caused by BOF-slag can be effectively reduced if adequate curing temperature and time are employed for the preparation of specimens. Based on the experimental results, the effects of the hydroxide concentration in activators without sodium hydroxide and sodium silicate, aging temperature and duration and curing temperature and time on the compressive strengths and durability of alkali-activated BOF-slag inorganic polymers are evaluated here.
1. 威廉•麥唐諾、麥可•布朗嘉,「從搖籃到搖籃-綠色經濟的設計提案,野人出版社」,2008。
2. 世界鋼鐵協會,https://www.worldsteel.org/zh/。
3. 中聯資源股份有限公司,企業責任報告書,pp.15,2014。
4. 李德河、李春雄,「中鋼轉爐石回脹抑制方法之研究」,碩士論文,國立成功大學土木工程研究所,2008。
5. Davidovits, J., “Geopolymers cement to minimize carbon dixide greenhouse-warming”, Ceramic Transaction, 37, 165-182, 1993。
6. 許伯良、林平全、徐登科,「轉爐石產製與工程應用」,轉爐石應用於瀝青混凝土鋪面研討會,2011。
7. 楊金成、蔡立文、俞明塗,「轉爐渣改質技術在中鋼之應用與突破」,中國鋼鐵股份有限公司-新材料研究發展處,2014。
8. 中國鋼鐵股份有限公司,http://www.csc.com.tw/index.html。
9. 綠野鋼莊,http://museum.csc.com.tw/。
10. 沈得縣、李承効,「轉爐石應用於瀝青混凝土鋪面使用手冊及注意事項」,轉爐石應用於瀝青混凝土鋪面研討會,2011。
11. 蔡柏棋、徐登科,「爐石與應用」,台灣省土木技師公會技師報No.938,2014。
12. 「電弧爐煉鋼還原碴資源化應用技術手冊」,經濟部工業局,2001。
13. 蘇茂豐,「電弧爐爐渣之資源化歷程」,綠機會通訊專題報導,2010。
14. 蔡柏棋、徐登科,「台灣常用爐石與工程應用實務」,台灣省土木技師公會技師報No.938,2014。
15. Xu Gao, Shin-ya Kitamura, ”Utilization of steelmaking slag in Japan and the recent progress towards soil amendment”, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
16. Matsunaga Hisahiro, Tanishiki Kazuho, Tsuzimoto Kazuhito, ”Environment-Friendly Block , “Ferroform”, Made from Steel Slag”, JFE TECHNICAL REPORT, No.13, May 2009。
17. Miyata Yasuhito, Sato Yoshio, Shimizu Satoru, Oyamada Kumi, “Environment Improvement in the Sea Bottom by Steelmaking Slag”, JFE TECHNICAL REPORT No.13, May 2009。
18. 林平全,「工業副產品作為混凝土材料體積膨脹問題探討與預防措施」,混凝土科技,第8卷第四期,pp.39-49,2014。
19. 黃孝信,「鋼碴種類、產出狀況與安定化方法」,混凝土科技,第8卷第四期,pp.31-38,2014。
20. 邱暉仁,「青春痘痘屋形成的原因與防治對策」,混凝土科技,第8卷第四期,pp.63-67,2014。
21. 詹穎雯,「煉鋼爐碴於混凝土中的再利用實務探討-強制煉鋼爐碴須經高溫燒結後再利用,才能根除混凝土青春痘的問題」,混凝土科技,第9卷第四期,pp.37-45,2015。
22. O. Purdon, The action of alkalis on blast furnace slag, Journal of the Society of Chemical Industry, 59, 99.191-202, 1940。
23. V. D. Glukhovsky, Soil silicates, their properties, technology and manufacturing and fields of application, Ukraine: Doct Tech Sc. Degree thesis. Civil Engineering Institute, pp.67-71, 1965。
24. J. Davidovits, Inorganic polymer, United States Patent #4,349,386& United States Patent #4,472,199, 1979。
25. Phair, J. W. and Van Deventer, J. S. J.,“Effect of Silicate Activator pH on Leaching of Waste Based inorganic polymer”, Minerals Engineering, Vol. 14, No.3, pp. 289-304, 2001。