簡易檢索 / 詳目顯示

研究生: 林威成
Lin, Wei-Cheng
論文名稱: 新非線性光學材料金屬硒鹵物之合成與鑑定
Synthesis and Characterization of New Nonlinear Optical Material of Metal Chalcohalide
指導教授: 許桂芳
Hsu, Kuei-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 51
中文關鍵詞: 金屬硒鹵物銀離子無序化非線性光學材料紅外光區高穿透度
外文關鍵詞: Metal chalcohalide, NLO materials, High transparency
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用固態反應法,在高溫600 ºC下合成出新穎結構的金屬硒鹵物Ag2.52(1)Sn0.97(1)Se2.88(4)I0.62(3) (1)。此化合物之結構屬於非對稱中心的點群,其晶系及空間群為Tetragonal I4 ̅,而單位晶格的軸長為a = 7.6232(10) Å,c = 26.046(3) Å。此化合物之結構由AgSe3I與SnSe4¬四面體形成三維的骨架結構。此結構主要由兩個單元厚層區塊所組成,而厚層則沿a軸無限延伸排列。
    本化合物之純相合成方法如下,先進行750 ºC高溫焠火 (quench) 的方式再經由退火 (annealing) 程序,即可獲得純相。以差示熱分析儀測定其熔點為481 oC,再結晶點為454 oC。本化合物之能隙值由紫外光可見光近紅外光吸收光譜儀鑑定為1.13 eV。本化合物之穿透度由傅立葉紅外光譜儀鑑定,可證實在波長2.5 μm ~ 25 μm的紅外光區有良好的穿透度,意味著我們化合物有作為紅外非線性光學材料的潛力。目前正在進行二倍頻的量測中,期許在其透光區有良好的二倍頻訊號。

    A new metal chalcohalide Ag2.52(1)Sn0.97(1)Se2.88(4)I0.62(3) was synthesized by a solid-state reaction at 600 ºC. This structure crystallizes in a noncentrosymmetric space group of Tetragonal I4 ̅ with cell parameters a = 7.6232(10) Å, c = 26.046(3) Å, V = 1513.6(4) Å3, and Z = 8. This compound adopts a new three-dimensional structure, whose frameworhk is constructed by corner-sharing AgX4 (X = Se and Se/I) and SnSe4 tetrahedra. The Ag+ ions are disordered and can be constrained in several positions that determines the final formula. The band gap determined by UV-vis-NIR absorption spectra is estimated to be around 1.13 eV. The differential thermal analysis of compound1 reveals that melting point is ~481 ºC and the recrystallization point is ~454 ºC. The sample is transparent in the mid-infrared region from 2 μm to 25 μm. The second harmonic generation (SHG) and Third harmonic generation (THG) intensities of the sample is in progress.

    摘要 I 誌謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 第二章 金屬硒鹵物之合成與鑑定 10 2.1 單晶合成方法 10 2.2 純相合成方法 12 2.3單晶X光繞射分析 (Single Crystal X-ray Diffraction Analysis) 13 2.4能量散佈光譜分析 (Energy Dispersive Spectrum Analysis, EDS) 17 2.5粉末X光繞射分析 (Powder X–ray Diffraction Analysis) 19 2.6差示熱分析 (Differential Thermal Analysis, DTA) 20 2.7紫外光–可見–近紅外光光譜分析 (UV–vis–NIR Reflection Spectrum Analysis) 21 2.8紅外光光譜分析 ( Infrared Spectrum Analysis) 22 2.9二倍頻訊號量測分析 (Second Harmonic Generation Measurement Analysis) 22 第三章 結果與討論 23 3.1化合物1之單晶結構 23 3.2純相合成及分析 34 3.3熔點及再結晶點分析 36 3.4能隙分析 40 3.5紅外光區穿透度分析 41 第四章 結論 42 參考文獻 43 附錄 47

    [1] Boyd, G.; Buehler, E.; Storz, F.; Wernick, J. IEEE J. Quantum Electron 1972, 8 (4), 419-426.
    [2] Chen, C.-t.; Liu, G.-z. Ann. Rev. Mater. Sci. 1986, 16 (1), 203-243.
    [3] Byer, R. L. 2000. IEEE J. Sel. Top. Quantum Electron. 2000, 6 (6), 911-930.
    [4] Brown, F.; Parks, R. E.; Sleeper, A. M. Phys. Rev. Lett. 1965, 14 (25), 1029-1031.
    [5] Eimerl, D. Ferroelectrics. 1987, 72 (1), 95-139.
    [6] Kildal, H.; Mikkelsen, J. C. Optics Commun. 1973, 9 (3), 315-318.
    [7] Byer, R. L.; Choy, M. M.; Herbst, R. L.; Chemla, D. S.; Feigelson, R. S. Appl. Phys. Lett. 1974, 24 (2), 65-68.
    [8] Shoji, I.; Kondo, T.; Kitamoto, A.; Shirane, M.; Ito, R. J. Opt. Soc. Am. B 1997, 14 (9), 2268-2294.
    [9] Boyd, G.; Kasper, H.; McFee, J. IEEE J. Quantum Electron 1971, 7 (12), 563-573.
    [10] Vakhshoori, D.; Wu, M. C.; Wang, S. Appl. Phys. Lett. 1988, 52 (6), 422-424.
    [11] Tang, C. L.; Bosenberg, W. R.; Ukachi, T.; Lane, R. J.; Cheng, L. K. Proc. IEEE 1992, 80 (3), 365-374.
    [12] Driel, H. M. V. IEEE Circuits Devices Mag. 1994, 10 (4), 30-35.
    [13] Aytur, O.; Dikmelik, Y. IEEE J. Quantum Electron. 1998, 34 (3), 447-458.
    [14] Becker, P. Adv. Mater. 1998, 10 (13), 979-992.
    [15] Kang, L.; Ramo, D. M.; Lin, Z.; Bristowe, P. D.; Qin, J.; Chen, C. J. Mater. Chem. C. 2013, 1 (44), 7363-7370.
    [16] Halasyamani, P. S.; Poeppelmeier, K. R. Chem. Mater. 1998, 10 (10), 2753-2769.
    [17] Auston, D. H.; Ballman, A. A.; Bhattacharya, P.; Bjorklund, G. J.; Bowden, C.; Boyd, R. W.; Brody, P. S.; Burnham, R.; Byer, R. L.; Carter, G.; Chemla, D.; Dagenais, M.; Dohler, G.; Efron, U.; Eimerl, D.; Feigelson, R. S.; Feinberg, J.; Feldman, B. J.; Garito, A. F.; Garmire, E. M.; Gibbs, H. M.; Glass, A. M.; Goldberg, L. S.; Gunshor, R. L.; Gustafson, T. K.; Hellwarth, R. W.; Kaplan, A. E.; Kelley, P. L.; Leonberger, F. J.; Lytel, R. S.; Majerfeld, A.; Menyuk, N.; Meredith, G. R.; Neurgaonkar, R. R.; Peyghambarian, N. G.; Prasad, P.; Rakuljic, G.; Shen, Y. R.; Smith, P. W.; Stamatoff, J.; Stegeman, G. I.; Stillman, G.; Tang, C. L.; Temkin, H.; Thakur, M.; Valley, G. C.; Wolff, P. A.; Woods, C. Appl. Opt. 1987, 26 (2), 211-211.
    [18] Das, S.; Bhar, G. C.; Gangopadhyay, S.; Ghosh, C. Appl. Opt. 2003, 42 (21), 4335-4340.
    [19] Kostyukova, N. Y.; Boyko, A. A.; Badikov, V.; Badikov, D.; Shevyrdyaeva, G.; Panyutin, V.; Marchev, G. M.; Kolker, D. B.; Petrov, V. Opt. Lett. 2016, 41 (15), 3667-3670.
    [20] Tyazhev, A.; Kolker, D.; Marchev, G.; Badikov, V.; Badikov, D.; Shevyrdyaeva, G.; Panyutin, V.; Petrov, V. Opt. Lett. 2012, 37 (19), 4146-4148.
    [21] Yin, W.; Feng, K.; Mei, D.; Yao, J.; Fu, P.; Wu, Y. Dalton Trans. 2012, 41 (8), 2272-2276.
    [22] Kuo, S.-M.; Chang, Y.-M.; Chung, I.; Jang, J.-I.; Her, B.-H.; Yang, S.-H.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F. Chem. Mater. 2013, 25 (12), 2427-2433.
    [23] Lin, X.; Guo, Y.; Ye, N. J. Solid State Chem. 2012, 195, 172-177.
    [24] Luo, Z.-Z.; Lin, C.-S.; Cheng, W.-D.; Zhang, H.; Zhang, W.-L.; He, Z.-Z. Inorg. Chem. 2013, 52 (1), 273-279.
    [25] Lin, H.; Zhou, L.-J.; Chen, L. Chem. Mater. 2012, 24 (17), 3406-3414.
    [26] Chen, X.; Huang, X.; Fu, A.; Li, J.; Zhang, L.-D.; Guo, H.-Y. Chem. Mater. 2000, 12 (8), 2385-2391.
    [27] Lai, W.-H.; Haynes, A. S.; Frazer, L.; Chang, Y.-M.; Liu, T.-K.; Lin, J.-F.; Liang, I. C.; Sheu, H.-S.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F. Chem. Mater. 2015, 27 (4), 1316-1326.
    [28] Zakery, A.; Elliott, S. R. Springer Ser. Opt. Sci. 2007, 135, 1-28.
    [29] Singh, P. K.; Dwivedi, D. K. Ferroelectrics. 2017, 520 (1), 256-273.
    [30] Zakery, A.; Elliott, S. R. J. Non-Cryst. Solids 2003, 330 (1), 1-12.
    [31] Liu, Q.; Zhao, X. J. Non-Cryst. Solids 2010, 356 (44), 2375-2377.
    [32] Nguyen, V. Q.; Sanghera, J. S.; Freitas, J. A.; Aggarwal, I. D.; Lloyd, I. K. J. Non-Cryst. Solids 1999, 248 (2), 103-114.
    [33] Boev, V.; Mitkova, M.; Nikolova, L.; Todorov, T.;Sharlandjiev, P. Opt. Mater. 2000, 13 (4), 389-396.
    [34] Haruvi-Busnach, I.; Dror, J.; Croitoru, N. J. Mater. Res. 1990, 5 (6), 1215-1223.
    [35] Wang, X.; Nie, Q.; Wang, G.; Sun, J.; Song, B.; Dai, S.; Zhang, X.; Bureau, B.; Boussard, C.; Conseil, C.; Ma, H. Acta Part A: Mol. Biomol. Spectrosc. 2012, 86, 586-589.
    [36] Guo, H.; Tao, H.; Gu, S.; Zheng, X.; Zhai, Y.; Chu, S.; Zhao, X.; Wang, S.; Gong, Q. J. Solid State Chem. 2007, 180 (1), 240-248.
    [37] Kohoutek, T.; Mizuno, S.; Suzuki, T.; Ohishi, Y.; Matsumoto, M.; Misumi, T. J. Opt. Soc. Am. B 2011, 28 (2), 298-305.
    [38] Haynes, A. S.; Saouma, F. O.; Otieno, C. O.; Clark, D. J.; Shoemaker, D. P.; Jang, J. I.; Kanatzidis, M. G. Chem. Mater. 2015, 27 (5), 1837-1846.
    [39] Haynes, A. S.; Banerjee, A.; Saouma, F. O.; Otieno, C. O.; Jang, J. I.; Kanatzidis, M. G. Chem. Mater. 2016, 28 (7), 2374-2383.
    [40] Kobayashi, H.; Kanbara, H.; Koga, M.; Kubodera, K. i. J. Appl. Phys. 1993, 74 (6), 3683-3687.
    [41] Wada, H.; Ishii, M.; Onoda, M.; Tansho, M.; Sato, A. Solid State Ionics 1996, 86-88, 159-163.
    [42] Lange, S.; Nilges, T. Chem. Mater. 2006, 18 (10), 2538-2544.
    [43] Nilges, T.; Osters, O.; Bawohl, M.; Bobet, J.-L.; Chevalier, B.; Decourt, R.; Weihrich, R. Chem. Mater. 2010, 22 (9), 2946-2954.
    [44] Nilges, T.; Reiser, S.; Hong, J. H.; Gaudin, E.; Pfitzner, A. Phys. Chem. Chem. Phys. 2002, 4 (23), 5888-5894.
    [45] Nilges, T.; Bawohl, M.; Naturforsch, Z. J. Chem. Sci., 2008, 63, 629–636.
    [46] Nilges, T.; Dreher, C.; Hezinger, A. Solid State Sci. 2005, 7, 79-88.
    [47] Nilges, T.; Messel, J.; Bawohl, M.; Lange, S. Chem. Mater. 2008, 20 (12), 4080-4091.

    下載圖示 校內:2024-07-16公開
    校外:2024-07-16公開
    QR CODE