| 研究生: |
林威成 Lin, Wei-Cheng |
|---|---|
| 論文名稱: |
新非線性光學材料金屬硒鹵物之合成與鑑定 Synthesis and Characterization of New Nonlinear Optical Material of Metal Chalcohalide |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 金屬硒鹵物 、銀離子無序化 、非線性光學材料 、紅外光區高穿透度 |
| 外文關鍵詞: | Metal chalcohalide, NLO materials, High transparency |
| 相關次數: | 點閱:44 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用固態反應法,在高溫600 ºC下合成出新穎結構的金屬硒鹵物Ag2.52(1)Sn0.97(1)Se2.88(4)I0.62(3) (1)。此化合物之結構屬於非對稱中心的點群,其晶系及空間群為Tetragonal I4 ̅,而單位晶格的軸長為a = 7.6232(10) Å,c = 26.046(3) Å。此化合物之結構由AgSe3I與SnSe4¬四面體形成三維的骨架結構。此結構主要由兩個單元厚層區塊所組成,而厚層則沿a軸無限延伸排列。
本化合物之純相合成方法如下,先進行750 ºC高溫焠火 (quench) 的方式再經由退火 (annealing) 程序,即可獲得純相。以差示熱分析儀測定其熔點為481 oC,再結晶點為454 oC。本化合物之能隙值由紫外光可見光近紅外光吸收光譜儀鑑定為1.13 eV。本化合物之穿透度由傅立葉紅外光譜儀鑑定,可證實在波長2.5 μm ~ 25 μm的紅外光區有良好的穿透度,意味著我們化合物有作為紅外非線性光學材料的潛力。目前正在進行二倍頻的量測中,期許在其透光區有良好的二倍頻訊號。
A new metal chalcohalide Ag2.52(1)Sn0.97(1)Se2.88(4)I0.62(3) was synthesized by a solid-state reaction at 600 ºC. This structure crystallizes in a noncentrosymmetric space group of Tetragonal I4 ̅ with cell parameters a = 7.6232(10) Å, c = 26.046(3) Å, V = 1513.6(4) Å3, and Z = 8. This compound adopts a new three-dimensional structure, whose frameworhk is constructed by corner-sharing AgX4 (X = Se and Se/I) and SnSe4 tetrahedra. The Ag+ ions are disordered and can be constrained in several positions that determines the final formula. The band gap determined by UV-vis-NIR absorption spectra is estimated to be around 1.13 eV. The differential thermal analysis of compound1 reveals that melting point is ~481 ºC and the recrystallization point is ~454 ºC. The sample is transparent in the mid-infrared region from 2 μm to 25 μm. The second harmonic generation (SHG) and Third harmonic generation (THG) intensities of the sample is in progress.
[1] Boyd, G.; Buehler, E.; Storz, F.; Wernick, J. IEEE J. Quantum Electron 1972, 8 (4), 419-426.
[2] Chen, C.-t.; Liu, G.-z. Ann. Rev. Mater. Sci. 1986, 16 (1), 203-243.
[3] Byer, R. L. 2000. IEEE J. Sel. Top. Quantum Electron. 2000, 6 (6), 911-930.
[4] Brown, F.; Parks, R. E.; Sleeper, A. M. Phys. Rev. Lett. 1965, 14 (25), 1029-1031.
[5] Eimerl, D. Ferroelectrics. 1987, 72 (1), 95-139.
[6] Kildal, H.; Mikkelsen, J. C. Optics Commun. 1973, 9 (3), 315-318.
[7] Byer, R. L.; Choy, M. M.; Herbst, R. L.; Chemla, D. S.; Feigelson, R. S. Appl. Phys. Lett. 1974, 24 (2), 65-68.
[8] Shoji, I.; Kondo, T.; Kitamoto, A.; Shirane, M.; Ito, R. J. Opt. Soc. Am. B 1997, 14 (9), 2268-2294.
[9] Boyd, G.; Kasper, H.; McFee, J. IEEE J. Quantum Electron 1971, 7 (12), 563-573.
[10] Vakhshoori, D.; Wu, M. C.; Wang, S. Appl. Phys. Lett. 1988, 52 (6), 422-424.
[11] Tang, C. L.; Bosenberg, W. R.; Ukachi, T.; Lane, R. J.; Cheng, L. K. Proc. IEEE 1992, 80 (3), 365-374.
[12] Driel, H. M. V. IEEE Circuits Devices Mag. 1994, 10 (4), 30-35.
[13] Aytur, O.; Dikmelik, Y. IEEE J. Quantum Electron. 1998, 34 (3), 447-458.
[14] Becker, P. Adv. Mater. 1998, 10 (13), 979-992.
[15] Kang, L.; Ramo, D. M.; Lin, Z.; Bristowe, P. D.; Qin, J.; Chen, C. J. Mater. Chem. C. 2013, 1 (44), 7363-7370.
[16] Halasyamani, P. S.; Poeppelmeier, K. R. Chem. Mater. 1998, 10 (10), 2753-2769.
[17] Auston, D. H.; Ballman, A. A.; Bhattacharya, P.; Bjorklund, G. J.; Bowden, C.; Boyd, R. W.; Brody, P. S.; Burnham, R.; Byer, R. L.; Carter, G.; Chemla, D.; Dagenais, M.; Dohler, G.; Efron, U.; Eimerl, D.; Feigelson, R. S.; Feinberg, J.; Feldman, B. J.; Garito, A. F.; Garmire, E. M.; Gibbs, H. M.; Glass, A. M.; Goldberg, L. S.; Gunshor, R. L.; Gustafson, T. K.; Hellwarth, R. W.; Kaplan, A. E.; Kelley, P. L.; Leonberger, F. J.; Lytel, R. S.; Majerfeld, A.; Menyuk, N.; Meredith, G. R.; Neurgaonkar, R. R.; Peyghambarian, N. G.; Prasad, P.; Rakuljic, G.; Shen, Y. R.; Smith, P. W.; Stamatoff, J.; Stegeman, G. I.; Stillman, G.; Tang, C. L.; Temkin, H.; Thakur, M.; Valley, G. C.; Wolff, P. A.; Woods, C. Appl. Opt. 1987, 26 (2), 211-211.
[18] Das, S.; Bhar, G. C.; Gangopadhyay, S.; Ghosh, C. Appl. Opt. 2003, 42 (21), 4335-4340.
[19] Kostyukova, N. Y.; Boyko, A. A.; Badikov, V.; Badikov, D.; Shevyrdyaeva, G.; Panyutin, V.; Marchev, G. M.; Kolker, D. B.; Petrov, V. Opt. Lett. 2016, 41 (15), 3667-3670.
[20] Tyazhev, A.; Kolker, D.; Marchev, G.; Badikov, V.; Badikov, D.; Shevyrdyaeva, G.; Panyutin, V.; Petrov, V. Opt. Lett. 2012, 37 (19), 4146-4148.
[21] Yin, W.; Feng, K.; Mei, D.; Yao, J.; Fu, P.; Wu, Y. Dalton Trans. 2012, 41 (8), 2272-2276.
[22] Kuo, S.-M.; Chang, Y.-M.; Chung, I.; Jang, J.-I.; Her, B.-H.; Yang, S.-H.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F. Chem. Mater. 2013, 25 (12), 2427-2433.
[23] Lin, X.; Guo, Y.; Ye, N. J. Solid State Chem. 2012, 195, 172-177.
[24] Luo, Z.-Z.; Lin, C.-S.; Cheng, W.-D.; Zhang, H.; Zhang, W.-L.; He, Z.-Z. Inorg. Chem. 2013, 52 (1), 273-279.
[25] Lin, H.; Zhou, L.-J.; Chen, L. Chem. Mater. 2012, 24 (17), 3406-3414.
[26] Chen, X.; Huang, X.; Fu, A.; Li, J.; Zhang, L.-D.; Guo, H.-Y. Chem. Mater. 2000, 12 (8), 2385-2391.
[27] Lai, W.-H.; Haynes, A. S.; Frazer, L.; Chang, Y.-M.; Liu, T.-K.; Lin, J.-F.; Liang, I. C.; Sheu, H.-S.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F. Chem. Mater. 2015, 27 (4), 1316-1326.
[28] Zakery, A.; Elliott, S. R. Springer Ser. Opt. Sci. 2007, 135, 1-28.
[29] Singh, P. K.; Dwivedi, D. K. Ferroelectrics. 2017, 520 (1), 256-273.
[30] Zakery, A.; Elliott, S. R. J. Non-Cryst. Solids 2003, 330 (1), 1-12.
[31] Liu, Q.; Zhao, X. J. Non-Cryst. Solids 2010, 356 (44), 2375-2377.
[32] Nguyen, V. Q.; Sanghera, J. S.; Freitas, J. A.; Aggarwal, I. D.; Lloyd, I. K. J. Non-Cryst. Solids 1999, 248 (2), 103-114.
[33] Boev, V.; Mitkova, M.; Nikolova, L.; Todorov, T.;Sharlandjiev, P. Opt. Mater. 2000, 13 (4), 389-396.
[34] Haruvi-Busnach, I.; Dror, J.; Croitoru, N. J. Mater. Res. 1990, 5 (6), 1215-1223.
[35] Wang, X.; Nie, Q.; Wang, G.; Sun, J.; Song, B.; Dai, S.; Zhang, X.; Bureau, B.; Boussard, C.; Conseil, C.; Ma, H. Acta Part A: Mol. Biomol. Spectrosc. 2012, 86, 586-589.
[36] Guo, H.; Tao, H.; Gu, S.; Zheng, X.; Zhai, Y.; Chu, S.; Zhao, X.; Wang, S.; Gong, Q. J. Solid State Chem. 2007, 180 (1), 240-248.
[37] Kohoutek, T.; Mizuno, S.; Suzuki, T.; Ohishi, Y.; Matsumoto, M.; Misumi, T. J. Opt. Soc. Am. B 2011, 28 (2), 298-305.
[38] Haynes, A. S.; Saouma, F. O.; Otieno, C. O.; Clark, D. J.; Shoemaker, D. P.; Jang, J. I.; Kanatzidis, M. G. Chem. Mater. 2015, 27 (5), 1837-1846.
[39] Haynes, A. S.; Banerjee, A.; Saouma, F. O.; Otieno, C. O.; Jang, J. I.; Kanatzidis, M. G. Chem. Mater. 2016, 28 (7), 2374-2383.
[40] Kobayashi, H.; Kanbara, H.; Koga, M.; Kubodera, K. i. J. Appl. Phys. 1993, 74 (6), 3683-3687.
[41] Wada, H.; Ishii, M.; Onoda, M.; Tansho, M.; Sato, A. Solid State Ionics 1996, 86-88, 159-163.
[42] Lange, S.; Nilges, T. Chem. Mater. 2006, 18 (10), 2538-2544.
[43] Nilges, T.; Osters, O.; Bawohl, M.; Bobet, J.-L.; Chevalier, B.; Decourt, R.; Weihrich, R. Chem. Mater. 2010, 22 (9), 2946-2954.
[44] Nilges, T.; Reiser, S.; Hong, J. H.; Gaudin, E.; Pfitzner, A. Phys. Chem. Chem. Phys. 2002, 4 (23), 5888-5894.
[45] Nilges, T.; Bawohl, M.; Naturforsch, Z. J. Chem. Sci., 2008, 63, 629–636.
[46] Nilges, T.; Dreher, C.; Hezinger, A. Solid State Sci. 2005, 7, 79-88.
[47] Nilges, T.; Messel, J.; Bawohl, M.; Lange, S. Chem. Mater. 2008, 20 (12), 4080-4091.