簡易檢索 / 詳目顯示

研究生: 張祈恩
Chang, Chi-En
論文名稱: 自動車網路中利用軌跡資訊預測未來鄰居以增進資料傳輸效率
Trajectory-Based Data Forwarding with Future Neighbor Prediction in Autonomous Driving Vehicular Environments
指導教授: 斯國峰
Ssu, Kuo-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 37
中文關鍵詞: 自動駕駛自動車自動車網路車載網路軌跡資訊資料傳輸
外文關鍵詞: Autonomous driving, vehicular network, trajectory information, carry and forward, data delivery, routing
相關次數: 點閱:155下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一般的無線車載網路中,因為車子的移動速度較快,使得拓樸變化快速,接觸中斷常常發生,車流密度的變化也很大,造成車輛之間的多跳傳輸是非常具有挑戰性的問題。近年來隨著自動駕駛汽車的技術逐漸成熟,可預見將來車載網路當中大多數車輛將會是自動駕駛汽車,成功大學可靠計算實驗室因而推動自動車網路技術(ADVENT)計畫,研發相關的技術與應用。自動車網路的最重要的特性是可以很精確的預測未來車子的軌跡與位置。因此,在此篇論文當中提出了一個自動車網路中利用軌跡資訊預測未來鄰居以增進資料傳輸效率的傳輸協定,利用所有自動駕駛汽車的軌跡與時間預測資訊辨認出每台車子的未來鄰居,並分析這些未來鄰居的幫忙傳輸封包的能力,以產生一個傳輸序列。當這些車輛需要傳送封包給目標車輛時,便會依據其傳輸序列來轉送封包。模擬結果顯示TFNP在自動車網路當中相較於其他協定,能達到更高的傳輸成功率與更低的傳輸延遲。

    In VANETs, vehicle-to-vehicle communication is challenging due to fast topology changing, frequent disconnections, and highly variable traffic densities. Some researchers have envisioned that most of the vehicles in the network will be autonomous vehicles in the near future. Dependable Computing Lab in National Cheng Kung University proposed a project, Autonomous Driving VEhicular Networking Technology (ADVENT), for related technologies and applications. The most important characteristic of autonomous driving vehicular environments is that nearly perfect future position prediction of vehicles may be achieved. In this paper, by leveraging the trajectory information of autonomous vehicles, a Trajectory-based data Forwarding scheme with future Neighbor Prediction (TFNP) in autonomous driving vehicular environments is proposed. With trajectory information of all autonomous vehicles, future neighbors of each vehicle are identified. Then the capability of each future neighbor to help forward packets is evaluated, and the forwarding sequences are thus constructed. Finally, when an autonomous vehicle has some packets to forward, it sends packets according to the forwarding sequence. The simulation results demonstrate the effectiveness and efficiency of the proposed scheme in autonomous driving vehicular environments.

    Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Vehicular Ad-hoc Networks . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Autonomous Driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Autonomous Driving VEhicular Networking Technology . . . . . . . . . . 3 1.4 Trajectory-Based Data Forwarding with Future Neighbor Prediction in Autonomous Driving Vehicular Environments . . . . . . . . . . . . . . . 3 2 Related Work and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 5 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.1 Future Neighbor Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.1.1 Case I : Future Neighbors Travelling In Opposite Directions On A Road . . . . . . . . . . 12 4.1.2 Case II : Future Neighbors Around Intersections . . . . . . . . . . 13 4.2 Forwarding Sequence Construction . . . . . . . . . . 16 4.2.1 Concept . . . . . . . . . 16 4.2.2 The Forwarding Sequence Construction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.3 Removing Inferior Forwarders From the Forwarding Sequence . . . . . . . . . 20 4.3 The Data Forwarding Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1 Simulation Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 Compared Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.1 Impact of Vehicle Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.2 Impact of Time Deviation in Trajectory Information Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    [1] G. Dimitrakopoulos and P. "Demestichas, Intelligent transportation systems," IEEE Vehicular Technology Magazine, vol. 5, no. 1, pp. 77-84, Mar. 2010.
    [2] Y. Toor, P. Muhlethaler, and A. Laouiti, "Vehicle ad hoc networks: applications and related technical issues," IEEE Communications Surveys Tutorials, vol. 10, no. 3, pp. 74-88, 2008.
    [3] E. Royer and C. K. Toh, "A review of current routing protocols for ad hoc mobile wireless networks," IEEE Personal Communications, vol. 6, no. 2, pp. 46-55, Apr. 1999.
    [4] "IEEE news releases," Sept. 2012. [Online]. Available: http://www.ieee.org/about/news/2012/5september_2_2012.html
    [5] P. J. He, K. F. Ssu, and Y. Y. Lin, "Sharing trajectories of autonomous driving vehicles to achieve time-efficient path navigation," in IEEE Vehicular Networking Conference, Dec. 2013, pp. 119-126.
    [6] C. Perkins and E. Royer, "Ad-hoc on-demand distance vector routing," in IEEE Workshop on Mobile Computing Systems and Applications, Feb. 1999, pp. 90-100.
    [7] D. B. Johnson and D. A. Maltz, "Dynamic source routing in ad hoc wireless networks," in Mobile Computing, vol. 353, 1996, pp. 153-181.
    [8] B. Karp and H. T. Kung, "GPSR: Greedy perimeter stateless routing for wireless networks," in Proc. of the 6th Annual International Conference on Mobile Computing and Networking, 2000, pp. 243-254.
    [9] C. Lochert, M. Mauve, H. Fuessler, and H. Hartenstein, "Geographic routing in city scenarios," SIGMOBILE Mobile Computing and Communications Review, vol. 9, no. 1, pp. 69-72, Jan. 2005.
    [10] C. Lochert, H. Hartenstein, J. Tian, H. Fussler, D. Hermann, and M. Mauve, "A routing strategy for vehicular ad hoc networks in city environments," in Proc. of IEEE Intelligent Vehicles Symposium, June 2003, pp. 156-161.
    [11] B.-C. Seet, G. Liu, B.-S. Lee, C.-H. Foh, K.-J. Wong, and K.-K. Lee, "A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications," Networking, vol. 3042, pp. 989-999, 2004.
    [12] J. Zhao and G. Cao, "VADD: Vehicle-assisted data delivery in vehicular ad hoc networks," IEEE Transactions on Vehicular Technology, vol. 57, no. 3, pp. 1910- 1922, May 2008.
    [13] M. Jerbi, R. Meraihi, S. M. Senouci, and Y. Ghamri Doudane, "GyTAR: Improved greedy traffic aware routing protocol for vehicular ad hoc networks in city environments," in Proc. of the 3rd International Workshop on Vehicular Ad Hoc Networks, 2006, pp. 88-89.
    [14] V. Naumov and T. Gross, "Connectivity-aware routing (CAR) in vehicular ad hoc networks," in Proc. of the IEEE International Conference on Computer Communications, May 2007, pp. 1919-1927.
    [15] J. Nzouonta, N. Rajgure, G. Wang, and C. Borcea, "VANET routing on city roads using real-time vehicular traffic information," IEEE Transactions on Vehicular Technology, vol. 58, no. 7, pp. 3609-3626, Sept. 2009.
    [16] "Garmin Traffic." [Online]. Available: http://www8.garmin.com/traffic
    [17] J. Jeong, S. Guo, Y. Gu, T. He, and D. Du, "TBD: Trajectory-based data forwarding for light-traffic vehicular networks," in IEEE International Conference on Distributed Computing Systems, June 2009, pp. 231-238.
    [18] ------, T. He, and D. Du, "TSF: Trajectory-based statistical forwarding for infrastructure-to-vehicle data delivery in vehicular networks," in IEEE International Conference on Distributed Computing Systems, June 2010, pp. 557-566.
    [19] F. Xu, S. Guo, J. Jeong, Y. Gu, Q. Cao, M. Liu, and T. He, "Utilizing shared vehicle trajectories for data forwarding in vehicular networks," in IEEE International Conference on Computer Communications, Apr. 2011, pp. 441-445.
    [20] Vehicle Safety Communications Project - Final Report, 2006.
    [21] I. Leontiadis, G. Marfia, D. Mack, G. Pau, C. Mascolo, and M. Gerla, "On the ectiveness of an opportunistic traffic management system for vehicular networks," IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1537- 1548, Dec. 2011.
    [22] "EstiNet." [Online]. Available: http://www.estinet.com/
    [23] S. Y.Wang, C. L. Chou, Y. H. Chiu, Y. S. Tzeng, M. S. Hsu, Y. W. Cheng, W. L. Liu, and T. W. Ho, "NCTUns 4.0: An integrated simulation platform for vehicular traffic, communication, and network researches," in IEEE Vehicular Technology Conference, Sept. 2007, pp. 2081-2085.
    [24] S. Y. Wang and C. C. Lin, "NCTUns 5.0: A network simulator for IEEE 802.11(p) and 1609 wireless vehicular network researches," in IEEE Vehicular Technology Conference, Sept. 2008, pp. 1-2.
    [25] ------, "NCTUns 6.0: A simulator for advanced wireless vehicular network research," in IEEE Vehicular Technology Conference, May 2010, pp. 1-2.

    下載圖示 校內:2018-08-27公開
    校外:2019-08-27公開
    QR CODE