簡易檢索 / 詳目顯示

研究生: 王蕙慈
Wang, Hui-Tzu
論文名稱: 以微波輔助水熱法合成氧化鎳微/奈米結構並應用於p型染料敏化太陽能電池
Microwave-assisted hydrothermal synthesis of NiO micro- and nano-structures and its application in p-type dye-sensitized solar cell
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 染料敏化太陽能電池微波輔助水熱法氧化鎳
外文關鍵詞: Dye-sensitized solar cell, microwave-assisted hydrothermal, NiO
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以微波輔助水熱法合成氧化鎳(NiO)之前驅物,再經由煅燒得NiO,並探討其晶體結構、表面形貌、微結構、比表面積及表面化學成分與鍵結。以合成出的NiO粉末製作成p型染料敏化太陽能電池(p-DSCs)之光電極並組裝成電池,探討NiO粉末球磨處理、光電極厚度、光電極製作方式及添加鋰離子(Li+)對光電極之紫外光-可見光吸收度、染料吸附量、電池效率及光電轉換效率的影響。
    在合成NiO粉末的部分,藉由改變微波水熱條件,我們可得到不同形貌之NiO,主要有棒狀、花狀與片狀,顆粒大小有微米級與奈米級尺寸,其皆為多晶結構且為中孔型材料。應用於p-DSCs上,發現將NiO粉末經球磨處理可使顆粒較小且均勻,故光電極品質較好,且綜合效率量測數據來看,本實驗合成出的NiO之最佳膜厚約2 μm;另外,若以兩階段製備,即塗佈第一層後進行燒結,再塗佈第二層並進行第二次燒結,由於提升了電荷收集效率,故得到較高之短路電流與電池效率;此外,我們還於配製漿料時添加Li+,使得電阻率降低、載子濃度提升,但也造成了染料吸附量變少,結果顯示1 at.% Li+為最佳添加量,得到的電池效率為0.039%,最大光電轉換效率為13.8%。

    In this study, the precursors of NiO were obtained by microwave-assisted hydrothermal preparation, and NiO were gotten by calcination followed. The resulting NiO were investigated its characteristics included phase compositions, morphologies, microstructures, specific surface area and surface compositions and chemical states. Selected NiO were used as p-type electrodes in dye-sensitized solar cells (DSCs) and to discuss the effects of ball milling pre-treatment, the thickness of the photoelectrodes, the preparation of the photoelectrodes and adding the lithium ion.
    The obtained NiO with different morphology and size could be controlled by changing the reaction condition. All of the rod, flower and sheet micro-and nano-particles are polycrystalline and mesoporous materials. On the other hand, the selected NiO was pre-treated by ball milling and the photoelectrode with 2μm was prepared in two steps, then the performances of DSC were better. Furthermore, adding 1 at.% Li+ in the NiO paste, a cell efficiency of 0.039% and a highest IPCE of 13.8% were obtained.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機、特色及目的 3 第二章 理論基礎與文獻回顧 5 2-1 濕式化學法合成NiO 5 2-1.1 溶膠-凝膠法 5 2-1.2 噴霧裂解法 6 2-1.3 微乳化法 7 2-1.4 傳統水熱法 8 2-1.5 微波輔助水熱法 10 2-2 p型-染料敏化太陽能電池 16 2-2.1 工作原理 16 2-2.2 p型氧化物半導體 18 2-2.3 染料光敏化劑 19 2-2.4 電解液 23 2-2.5 串聯式染料敏化太陽能電池 (Tandem DSCs) 25 2-2.6 p-DSCs的現況與未來發展 28 2-3 NiO-染料敏化太陽能電池 30 第三章 實驗方法與步驟 33 3-1 實驗藥品與材料 33 3-2 實驗設計與流程 34 3-3 合成NiO微/奈米顆粒 35 3-4 染料敏化太陽能電池組裝 39 3-4.1 NiO粉末球磨前處理 39 3-4.2 NiO漿料配製 39 3-4.3 NiO薄膜光電極製備 39 3-4.4 浸泡吸附染料光敏化劑 40 3-4.5 電解液配製 40 3-4.6 對電極製作 41 3-4.7 染料敏化太陽能電池組裝 41 3-5 樣品特性分析 42 3-5.1 結晶結構分析 42 3-5.2 熱重損失分析 42 3-5.3 表面形貌分析 43 3-5.4 微結構分析 43 3-5.5 比表面積分析 44 3-5.6 成分與化學鍵結分析 44 3-5.7 光學分析 44 3-5.8 電池效率分析 45 3-5.9 光電轉換效率分析 46 第四章 結果與討論 48 4-1 前驅物及NiO的結晶結構及形貌轉變與熱重損失分析 48 4-2 微波水熱條件對合成NiO的影響 52 4-2.1 成長機制 52 4-2.2 表面形貌分析 54 4-2.3 晶體結構分析 68 4-2.4 微結構分析 72 4-2.5 比表面積分析 74 4-2.6 成分與化學鍵結分析 76 4-3 NiO-DSCs 80 4-3.1 NiO粉末球磨前處理的影響 80 4-3.2 光電極厚度的影響 87 4-3.3 光電極製備方式的影響 91 4-3.4 添加鋰離子(Li+)的影響 95 第五章 結論 102 參考文獻 104 附錄 109   表目錄 表 2- 1 各種染料應用在p-DSCs上之電池效率表現 21 表 2- 2 Tandem DSCs之電池效率表現整理 28 表 4- 1 不同微波水熱條件下製得之NiO以XRD分析後所得到的(200)面繞射角(θ200)、半高寬(FWHM200)及晶粒大小(Dc) 70 表 4- 2 不同微波水熱條件之代號與縮寫 71 表 4- 3 不同微波水熱條件下製得之NiO的比表面積分析結果 75 表 4- 4 孔洞類型與其孔徑範圍 75 表 4- 5 Sample A-G之XPS Ni 2p細掃圖做curve fitting處理後,所有峰的位置(Binding energy)與Area ratio (1.5 ev sat./total Ni2p3/2, %) 79 表 4- 6 微波水熱條件為:0.1M, 0.1M, PVP post-added, 100℃之NiO粉末未球磨(w/o BM)與球磨後(with BM)的比表面積分析結果 82 表 4- 7 比較未球磨與有球磨處理之NiO光電極膜厚、染料吸附量與組裝成DSC之效率量測結果 86 表 4- 8 比較不同NiO光電極層數之膜厚、染料吸附量與組裝成DSC之效率量測結果 90 表 4- 9 比較不同光電極製備方法之膜厚、染料吸附量與組裝成DSC之效率量測結果 94 表 4- 10 添加不同Li+濃度之NiO光電極的霍爾量測結果:電阻率、載子遷移率及載子濃度 97 表 4- 11 比較添加不同Li+濃度於NiO中之膜厚、染料吸附量與組裝成DSC之效率量測結果 100   圖目錄 圖 1- 1 各類太陽能電池之光電轉換效率 2 圖 2- 1 噴霧裂解法之裝置。1. 基板;2. 加熱體;3. 噴嘴;4. 載流氣體;5. 反應溶液;6. 超音波震盪器 7 圖 2- 2 (a) 水在油中型 (water-in-oil, w/o) 及 (b) 油在水中型(oil-in-water, o/w) 的微乳化系統 8 圖 2- 3 高壓釜裝置 9 圖 2- 4 (a) 傳統加熱方式;(b) 微波加熱方式 11 圖 2- 5 以硫酸鎳及尿素合成珊瑚狀NiO之成長機制 14 圖 2- 6 以氯化鎳、醋酸鈉與乙二醇合成之 (a) NiO前驅物及 (b) NiO的穿透式電子顯微鏡影像 15 圖 2- 7 p型染料敏化太陽能電池構造及反應路徑示意 17 圖 2- 8 鈷系電解液 (Tris(4,4’-di-tert-butyl-2,2’-dipyridyl)cobalt(Ⅱ/Ⅲ) ) 25 圖 2- 9 串聯式染料敏化太陽能電池構造及反應路徑示意 26 圖 2- 10 p型、n型及串聯式染料敏化太陽能電池之電壓-電流曲線圖 27 圖 2- 11 以酒精、水、氯化鎳及共聚合物合成之奈米孔隙NiO薄膜 31 圖 2- 12 以醋酸鎳及hexamethylenetetramine合成之自組裝NiO薄膜 32 圖 3- 1 (a) 微波輔助製程之鐵氟龍罐;(b) 微波輔助系統 38 圖 3- 2 製作NiO光電極之流程圖 40 圖 3- 3 電池組裝示意圖 41 圖 3- 4 (a) 太陽光源模擬器與 (b) 數位電表 47 圖 4- 1 微波水熱製程所得前驅物之XRD圖 49 圖 4- 2 煅燒後所得產物之XRD圖 49 圖 4- 3 微波水熱製程所得前驅物之熱重損失分析(TGA) 50 圖 4- 4 水熱製程所得前驅物與煅燒後所得產物(NiO) 之SEM影像比較。(a)、(c)、(e)及(g)分別為花狀、棒狀、花狀(高倍率)及棒狀(高倍率)前驅物之SEM影像;(b)、(d)、(f)及(h)則分別為花狀、棒狀、花狀(高倍率)及棒狀(高倍率)NiO之SEM影像 51 圖 4- 5 交錯聚集的NiO之(a) SEM影像 53 圖 4- 6 不同微波水熱溫度下所合成之NiO。(a) 60℃, (b) 100℃, (c) 150℃, (d) 200℃ 55 圖 4- 7 棒狀之長度與寬度對微波水熱溫度的關係圖 56 圖 4- 8 棒狀之長寬比對微波水熱溫度的關係圖 56 圖 4- 9 不同原料溶液濃度合成之NiO。(a)硫酸鎳與草酸均為0.1M;(b)為(a)之高倍影像;(c)0.02M硫酸鎳與0.1M草酸;(d)0.1M硫酸鎳與0.02M草酸;(e)0.01M硫酸鎳與0.1M草酸;(f)0.1M硫酸鎳與0.01M草酸 59 圖 4- 10 硫酸鎳與草酸均為0.02M合成之NiO,(a)為添加H2SO4調整其pH值至1.3;(b)為原始溶液,pH值為1.8;(c)和(d)分別為以NaOH調整pH值至4.5及6.5。 61 圖 4- 11 PVP不同添加順序所合成之NiO。(a)、(b)、(c)及(d)為硫酸鎳與草酸濃度皆為0.02M,(a)未加PVP;(b)PVP加於硫酸鎳溶液中;(c)PVP加於草酸溶液中;(d)PVP加於硫酸鎳與草酸混合溶液中;(e) 硫酸鎳與草酸濃度皆為0.1M,PVP加於硫酸鎳與草酸混合溶液中 64 圖 4- 12 添加PVP保護劑於草酸鎳溶液中,再混合硫酸鎳與草酸溶液之反應示意圖 65 圖 4- 13 於混合硫酸鎳與草酸溶液後添加PVP保護劑之反應示意圖 65 圖 4- 14 (a) 0.1M硫酸鎳與0.1M草酸所製得之NiO;(b) 0.1M醋酸鎳與0.1M草酸所製得之NiO;(c) 0.1M硫酸鎳與0.2M氫氧化鈉所製得之NiO 67 圖 4- 15 不同微波水熱條件下製得之NiO的XRD圖 69 圖 4- 16 不同煅燒溫度所得之NiO的XRD圖 70 圖 4- 17 花狀結構NiO之TEM分析 72 圖 4- 18 棒狀結構NiO之TEM分析 73 圖 4- 19 片狀結構NiO之TEM分析 73 圖 4- 20 Sample A之XPS全譜圖 77 圖 4- 21 Sample A之XPS Ni 2p細掃圖 78 圖 4- 22 (a) NiO6八面體結構;(b) NiO5金字塔型結構 78 圖 4- 23 微波水熱條件為:0.1M, 0.1M, PVP post-added, 100℃之NiO粉末SEM影像。(a) 未球磨;(b) 球磨後。 81 圖 4- 24 微波水熱條件為:0.1M, 0.1M, PVP post-added, 100℃之NiO粉末TEM影像。(a) 未球磨;(b) 球磨後。 81 圖 4- 25 微波水熱條件為:0.1M, 0.1M, PVP post-added, 100℃之NiO粉末製作成光電極後的SEM上視影像。(a) 未球磨;(b) 球磨後。 82 圖 4- 26 未吸附染料之NiO光電極的紫外光-可見光分析光譜圖。比較未球磨與有球磨處理的吸收度。(w/o BM為無球磨,with BM為有球磨) 84 圖 4- 27 吸附C343染料之NiO光電極的紫外光-可見光分析光譜圖。比較未球磨與有球磨處理的吸收度 85 圖 4- 28 比較未球磨與有球磨處理之NiO組裝成DSC的I-V曲線 85 圖 4- 29 比較未球磨與有球磨處理之NiO組裝成DSC的IPCE 86 圖 4- 30 未吸附染料之NiO光電極的紫外光-可見光分析光譜圖。比較不同厚度之光電極的吸收度(1L為塗佈一層,2L為塗佈兩層,依此類推) 88 圖 4- 31 吸附C343染料之NiO光電極的紫外光-可見光分析光譜圖。比較不同厚度之光電極的吸收度 89 圖 4- 32 比較不同NiO光電極厚度組裝成DSC的I-V曲線 89 圖 4- 33 比較不同NiO光電極厚度組裝成DSC的IPCE 90 圖 4- 34 未吸附染料之NiO光電極的紫外光-可見光分析光譜圖。比較不同光電極製備方法的吸收度(1 step為一階段製備,2 steps為兩階段製備) 92 圖 4- 35 吸附C343染料之NiO光電極的紫外光-可見光分析光譜圖。比較不同光電極製備方法的吸收度 93 圖 4- 36 比較不同光電極製備方法組裝成DSC的I-V曲線 93 圖 4- 37 比較不同光電極製備方法組裝成DSC的IPCE 94 圖 4- 38 添加不同濃度Li+之NiO光電極的XRD分析圖(w/o Li+為未添加Li+,1% Li+為添加相對於Ni2+來看1 at.%的Li+,依此類推) 96 圖 4- 39 添加5% Li+之光電極的AES表面分析 97 圖 4- 40 未吸附染料之NiO光電極的紫外光-可見光分析光譜圖。比較添加不同Li+濃度的光吸收度 99 圖 4- 41 吸附C343染料之NiO光電極的紫外光-可見光分析光譜圖。比較添加不同Li+濃度的光吸收度 99 圖 4- 42 比較添加不同Li+濃度於NiO中組裝成DSC的I-V曲線 100 圖 4- 43 比較添加不同Li+濃度於NiO中組裝成DSC的IPCE 101

    1. Oregan, B. and M. Grätzel, A low-cost high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346): p. 737-740, 1991.
    2. Nazeeruddin, M.K., et al., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society, 123(8): p. 1613-1624, 2001.
    3. Gao, F., et al., Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Journal of the American Chemical Society, 130(32): p. 10720-10728, 2008.
    4. Barbe, C.J., et al., Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Ceramic Society, 80(12): p. 3157-3171, 1997.
    5. Ohsaki, Y., et al., Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Physical Chemistry Chemical Physics, 7(24): p. 4157-4163, 2005.
    6. Mor, G.K., et al., Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 6(2): p. 215-218, 2006.
    7. Lee, Y.L. and Y.S. Lo, Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Advanced Functional Materials, 19(4): p. 604-609, 2009.
    8. Lin, S.C., et al., Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Applied Physics Letters, 90(14): 143517, 2007.
    9. Papageorgiou, N., et al., The performance and stability of ambient temperature molten salts for solar cell applications. Journal of the Electrochemical Society, 143(10): p. 3099-3108, 1996.
    10. O'Regan, B. and D.T. Schwartz, Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL ' NCS/CuSCN: Initiation and potential mechanisms. Chemistry of Materials, 10(6): p. 1501-1509, 1998.
    11. Bach, U., et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395(6702): p. 583-585, 1998.
    12. Wang, P., et al., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003. 2(6): p. 402-407, 2003.
    13. Longo, C., et al., Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. Journal of Physical Chemistry B, 106(23): p. 5925-5930, 2002.
    14. Pichot, F., J.R. Pitts, and B.A. Gregg, Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells. Langmuir, 16(13): p. 5626-5630, 2000.
    15. Green, M.A., Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics, 9(2): p. 123-135, 2001.
    16. Odobel, F., et al., New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors: Challenges and Opportunities. Accounts of Chemical Research, 43(8): p. 1063-1071, 2010.
    17. Nattestad, A., et al., Highly efficient photocathodes for dye-sensitized tandem solar cells. Nature Materials, 9(1): p. 31-35, 2010.
    18. Park, J., et al., Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Advanced Materials, 17(4): p. 429-434, 2005.
    19. Wang, X., et al., High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance. Crystal Growth & Design, 6(9): p. 2163-2165, 2006.
    20. Needham, S.A., G.X. Wang, and H.K. Liu, Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power Sources, 159(1): p. 254-257, 2006.
    21. Srinivasan, V. and J.W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors. Journal of the Electrochemical Society, 144(8): p. L210-L213, 1997.
    22. Tiwari, S.D. and K.P. Rajeev, Magnetic properties of NiO nanoparticles. Thin Solid Films, 505(1-2): p. 113-117, 2006.
    23. He, J.J., et al., Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. Journal of Physical Chemistry B, 103(42): p. 8940-8943, 1999.
    24. Jiao, Z., et al., The electrochromic characteristics of sol-gel-prepared NiO thin film. Nanotechnology, 14(4): p. 458-461, 2003.
    25. Surca, A., B. Orel, and B. Pihlar, Sol-gel derived hydrated nickel oxide electrochromic films: Optical, spectroelectrochemical and structural properties. Journal of Sol-Gel Science and Technology, 8(1-3): p. 743-749, 1997.
    26. Lenggoro, I.W., et al., Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Materials Research Bulletin, 38(14): p. 1819-1827, 2003.
    27. Reguig, B.A., et al., Effect of the precursor solution concentration on the NiO thin film properties deposited by spray pyrolysis. Solar Energy Materials and Solar Cells, 90(10): p. 1381-1392, 2006.
    28. Han, D.Y., et al., Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion. Powder Technology, 147(1-3): p. 113-116, 2004.
    29. Justin, P., S.K. Meher, and G.R. Rao, Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis. Journal of Physical Chemistry C, 114(11): p. 5203-5210, 2010.
    30. Song, X.F. and L. Gao, Facile Synthesis of Polycrystalline NiO Nanorods Assisted by Microwave Heating. Journal of the American Ceramic Society, 91(10): p. 3465-3468, 2008.
    31. Zhao, B., et al., Synthesis of Flower-Like NiO and Effects of Morphology on Its Catalytic Properties. Journal of Physical Chemistry C, 113(32): p. 14440-14447, 2009.
    32. Palanisamy, P., Biosurfactant mediated synthesis of NiO nanorods. Materials Letters, 62(4-5): p. 743-746, 2008.
    33. Rao, K.J., et al., Synthesis of inorganic solids using microwaves. Chemistry of Materials, 11(4): p. 882-895, 1999.
    34. Gabriel, C., et al., Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27(3): p. 213-223, 1998.
    35. Wang, Y. and J.J. Ke, Preparation of nickel oxide powder by decomposition of basic nickel carbonate in microwave field with nickel oxide seed as a microwave absorbing additive. Materials Research Bulletin, 31(1): p. 55-61, 1996.
    36. Lai, T.L., et al., Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide. Materials Research Bulletin, 44(10): p. 2040-2044, 2009.
    37. Palchik, O., et al., Preparation and characterization of Ni/NiO composite using microwave irradiation and sonication. Nanostructured Materials, 11(3): p. 415-420, 1999.
    38. Hagfeldt, A. and M. Grätzel, Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 95(1): p. 49-68, 1995.
    39. Wang, W.Z., et al., Synthesis and characterization of Cu2O nanowires by a novel reduction route. Advanced Materials, 14(1): p. 67-69, 2002.
    40. Bandara, J. and J.P. Yasomanee, p-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semiconductor Science and Technology, 22(2): p. 20-24, 2007.
    41. Nattestad, A., et al., Dye-sensitized nickel(II) oxide photocathodes for tandem solar cell applications. Nanotechnology, 19(29): 295304, 2008.
    42. Qin, P., et al., Design of an organic chromophore for p-type dye-sensitized solar cells. Journal of the American Chemical Society, 130(27): p. 8570-8571, 2008.
    43. Mizoguchi, Y. and S. Fujihara, Fabrication and dye-sensitized solar cell performance of nanostructured NiO/coumarin 343 photocathodes. Electrochemical and Solid State Letters, 11(8): p. K78-K80, 2008.
    44. Mori, S., et al., Charge-Transfer Processes in Dye-Sensitized NiO Solar Cells. Journal of Physical Chemistry C, 112(41): p. 16134-16139, 2008.
    45. Lepleux, L., et al., Simple and Reproducible Procedure to Prepare Self-Nanostructured NiO Films for the Fabrication of P-Type Dye-Sensitized Solar Cells. Inorganic Chemistry, 48(17): p. 8245-8250, 2009.
    46. Qin, P., et al., High Incident Photon-to-Current Conversion Efficiency of p-Type Dye-Sensitized Solar Cells Based on NiO and Organic Chromophores. Advanced Materials, 21(29): p. 2993-2996, 2009.
    47. Nakasa, A., et al., A high voltage dye-sensitized solar cell using a nanoporous NiO photocathode. Chemistry Letters, 34(4): p. 500-501, 2005.
    48. Duffy, N.W., et al., Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells. Journal of Physical Chemistry B, 104(38): p. 8916-8919, 2000.
    49. Zhu, H., A. Hagfeldt, and G. Boschloo, Photoelectrochemistry of mesoporous NiO electrodes in Iodide/Triiodide electrolytes. Journal of Physical Chemistry C, 111(47): p. 17455-17458, 2007.
    50. Gibson, E.A., et al., A p-Type NiO-Based Dye-Sensitized Solar Cell with an Open-Circuit Voltage of 0.35 V. Angewandte Chemie-International Edition, 48(24): p. 4402-4405, 2009.
    51. Bolton, J.R., S.J. Strickler, and J.S. Connolly, Limiting and realizable efficiencies of solar photolysis of water. Nature, 316(6028): p. 495-500, 1985.
    52. He, J.J., et al., Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Solar Energy Materials and Solar Cells, 62(3): p. 265-273, 2002.
    53. Sumikura, S., et al., Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. Journal of Photochemistry and Photobiology a-Chemistry, 199(1): p. 1-7, 2008.
    54. Li, L., et al., Double-Layered NiO Photocathodes for p-Type DSSCs with Record IPCE. Advanced Materials, 22(15): p. 1759-1762, 2010.
    55. Cao, G., Nanostructures and nanomaterials: synthesis, properties, and application. 1st ed. imperial College Press. 53, 2004.
    56. Liang, Z.H., Y.J. Zhu, and X.L. Hu, beta-nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets. Journal of Physical Chemistry B, 108(11): p. 3488-3491, 2004.
    57. Biju, V. and M.A. Khadar, Electronic structure of nanostructured nickel oxide using Ni 2p XPS analysis. Journal of Nanoparticle Research, 4(3): p. 247-253, 2002.
    58. Tomellini, M., Final-states after Ni2p photoemission in NiO-comment. Journal of Electron Spectroscopy and Related Phenomena, 58(1-2): p. 75-78, 1992.
    59. Sangaletti, L., L.E. Depero, and F. Parmigiani, On the non-local screening mechanisms in the 2p photoelectron spectra of NiO and La2NiO4. Solid State Communications, 103(7): p. 421-424, 1997.
    60. Soriano, L., et al., Surface effects in the Ni 2p x-ray photoemission spectra of NiO. Physical Review B, 75(23): 233417, 2007.
    61. Jarzebski, Z.M., Oxide Semiconductors. Pergamon, New York. P.150, 1973.
    62. Dutta, T., et al., Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions. Journal of Applied Physics, 108(8): 083715, 2010.

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE