| 研究生: |
王蕙慈 Wang, Hui-Tzu |
|---|---|
| 論文名稱: |
以微波輔助水熱法合成氧化鎳微/奈米結構並應用於p型染料敏化太陽能電池 Microwave-assisted hydrothermal synthesis of NiO micro- and nano-structures and its application in p-type dye-sensitized solar cell |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 染料敏化太陽能電池 、微波輔助水熱法 、氧化鎳 |
| 外文關鍵詞: | Dye-sensitized solar cell, microwave-assisted hydrothermal, NiO |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以微波輔助水熱法合成氧化鎳(NiO)之前驅物,再經由煅燒得NiO,並探討其晶體結構、表面形貌、微結構、比表面積及表面化學成分與鍵結。以合成出的NiO粉末製作成p型染料敏化太陽能電池(p-DSCs)之光電極並組裝成電池,探討NiO粉末球磨處理、光電極厚度、光電極製作方式及添加鋰離子(Li+)對光電極之紫外光-可見光吸收度、染料吸附量、電池效率及光電轉換效率的影響。
在合成NiO粉末的部分,藉由改變微波水熱條件,我們可得到不同形貌之NiO,主要有棒狀、花狀與片狀,顆粒大小有微米級與奈米級尺寸,其皆為多晶結構且為中孔型材料。應用於p-DSCs上,發現將NiO粉末經球磨處理可使顆粒較小且均勻,故光電極品質較好,且綜合效率量測數據來看,本實驗合成出的NiO之最佳膜厚約2 μm;另外,若以兩階段製備,即塗佈第一層後進行燒結,再塗佈第二層並進行第二次燒結,由於提升了電荷收集效率,故得到較高之短路電流與電池效率;此外,我們還於配製漿料時添加Li+,使得電阻率降低、載子濃度提升,但也造成了染料吸附量變少,結果顯示1 at.% Li+為最佳添加量,得到的電池效率為0.039%,最大光電轉換效率為13.8%。
In this study, the precursors of NiO were obtained by microwave-assisted hydrothermal preparation, and NiO were gotten by calcination followed. The resulting NiO were investigated its characteristics included phase compositions, morphologies, microstructures, specific surface area and surface compositions and chemical states. Selected NiO were used as p-type electrodes in dye-sensitized solar cells (DSCs) and to discuss the effects of ball milling pre-treatment, the thickness of the photoelectrodes, the preparation of the photoelectrodes and adding the lithium ion.
The obtained NiO with different morphology and size could be controlled by changing the reaction condition. All of the rod, flower and sheet micro-and nano-particles are polycrystalline and mesoporous materials. On the other hand, the selected NiO was pre-treated by ball milling and the photoelectrode with 2μm was prepared in two steps, then the performances of DSC were better. Furthermore, adding 1 at.% Li+ in the NiO paste, a cell efficiency of 0.039% and a highest IPCE of 13.8% were obtained.
1. Oregan, B. and M. Grätzel, A low-cost high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346): p. 737-740, 1991.
2. Nazeeruddin, M.K., et al., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society, 123(8): p. 1613-1624, 2001.
3. Gao, F., et al., Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Journal of the American Chemical Society, 130(32): p. 10720-10728, 2008.
4. Barbe, C.J., et al., Nanocrystalline titanium oxide electrodes for photovoltaic applications. Journal of the American Ceramic Society, 80(12): p. 3157-3171, 1997.
5. Ohsaki, Y., et al., Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Physical Chemistry Chemical Physics, 7(24): p. 4157-4163, 2005.
6. Mor, G.K., et al., Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Letters, 6(2): p. 215-218, 2006.
7. Lee, Y.L. and Y.S. Lo, Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Advanced Functional Materials, 19(4): p. 604-609, 2009.
8. Lin, S.C., et al., Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Applied Physics Letters, 90(14): 143517, 2007.
9. Papageorgiou, N., et al., The performance and stability of ambient temperature molten salts for solar cell applications. Journal of the Electrochemical Society, 143(10): p. 3099-3108, 1996.
10. O'Regan, B. and D.T. Schwartz, Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL ' NCS/CuSCN: Initiation and potential mechanisms. Chemistry of Materials, 10(6): p. 1501-1509, 1998.
11. Bach, U., et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395(6702): p. 583-585, 1998.
12. Wang, P., et al., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2003. 2(6): p. 402-407, 2003.
13. Longo, C., et al., Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. Journal of Physical Chemistry B, 106(23): p. 5925-5930, 2002.
14. Pichot, F., J.R. Pitts, and B.A. Gregg, Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells. Langmuir, 16(13): p. 5626-5630, 2000.
15. Green, M.A., Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics, 9(2): p. 123-135, 2001.
16. Odobel, F., et al., New Photovoltaic Devices Based on the Sensitization of p-type Semiconductors: Challenges and Opportunities. Accounts of Chemical Research, 43(8): p. 1063-1071, 2010.
17. Nattestad, A., et al., Highly efficient photocathodes for dye-sensitized tandem solar cells. Nature Materials, 9(1): p. 31-35, 2010.
18. Park, J., et al., Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Advanced Materials, 17(4): p. 429-434, 2005.
19. Wang, X., et al., High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance. Crystal Growth & Design, 6(9): p. 2163-2165, 2006.
20. Needham, S.A., G.X. Wang, and H.K. Liu, Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. Journal of Power Sources, 159(1): p. 254-257, 2006.
21. Srinivasan, V. and J.W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors. Journal of the Electrochemical Society, 144(8): p. L210-L213, 1997.
22. Tiwari, S.D. and K.P. Rajeev, Magnetic properties of NiO nanoparticles. Thin Solid Films, 505(1-2): p. 113-117, 2006.
23. He, J.J., et al., Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. Journal of Physical Chemistry B, 103(42): p. 8940-8943, 1999.
24. Jiao, Z., et al., The electrochromic characteristics of sol-gel-prepared NiO thin film. Nanotechnology, 14(4): p. 458-461, 2003.
25. Surca, A., B. Orel, and B. Pihlar, Sol-gel derived hydrated nickel oxide electrochromic films: Optical, spectroelectrochemical and structural properties. Journal of Sol-Gel Science and Technology, 8(1-3): p. 743-749, 1997.
26. Lenggoro, I.W., et al., Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Materials Research Bulletin, 38(14): p. 1819-1827, 2003.
27. Reguig, B.A., et al., Effect of the precursor solution concentration on the NiO thin film properties deposited by spray pyrolysis. Solar Energy Materials and Solar Cells, 90(10): p. 1381-1392, 2006.
28. Han, D.Y., et al., Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion. Powder Technology, 147(1-3): p. 113-116, 2004.
29. Justin, P., S.K. Meher, and G.R. Rao, Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis. Journal of Physical Chemistry C, 114(11): p. 5203-5210, 2010.
30. Song, X.F. and L. Gao, Facile Synthesis of Polycrystalline NiO Nanorods Assisted by Microwave Heating. Journal of the American Ceramic Society, 91(10): p. 3465-3468, 2008.
31. Zhao, B., et al., Synthesis of Flower-Like NiO and Effects of Morphology on Its Catalytic Properties. Journal of Physical Chemistry C, 113(32): p. 14440-14447, 2009.
32. Palanisamy, P., Biosurfactant mediated synthesis of NiO nanorods. Materials Letters, 62(4-5): p. 743-746, 2008.
33. Rao, K.J., et al., Synthesis of inorganic solids using microwaves. Chemistry of Materials, 11(4): p. 882-895, 1999.
34. Gabriel, C., et al., Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27(3): p. 213-223, 1998.
35. Wang, Y. and J.J. Ke, Preparation of nickel oxide powder by decomposition of basic nickel carbonate in microwave field with nickel oxide seed as a microwave absorbing additive. Materials Research Bulletin, 31(1): p. 55-61, 1996.
36. Lai, T.L., et al., Microwave-assisted hydrothermal synthesis of coralloid nanostructured nickel hydroxide hydrate and thermal conversion to nickel oxide. Materials Research Bulletin, 44(10): p. 2040-2044, 2009.
37. Palchik, O., et al., Preparation and characterization of Ni/NiO composite using microwave irradiation and sonication. Nanostructured Materials, 11(3): p. 415-420, 1999.
38. Hagfeldt, A. and M. Grätzel, Light-induced redox reactions in nanocrystalline systems. Chemical Reviews, 95(1): p. 49-68, 1995.
39. Wang, W.Z., et al., Synthesis and characterization of Cu2O nanowires by a novel reduction route. Advanced Materials, 14(1): p. 67-69, 2002.
40. Bandara, J. and J.P. Yasomanee, p-type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semiconductor Science and Technology, 22(2): p. 20-24, 2007.
41. Nattestad, A., et al., Dye-sensitized nickel(II) oxide photocathodes for tandem solar cell applications. Nanotechnology, 19(29): 295304, 2008.
42. Qin, P., et al., Design of an organic chromophore for p-type dye-sensitized solar cells. Journal of the American Chemical Society, 130(27): p. 8570-8571, 2008.
43. Mizoguchi, Y. and S. Fujihara, Fabrication and dye-sensitized solar cell performance of nanostructured NiO/coumarin 343 photocathodes. Electrochemical and Solid State Letters, 11(8): p. K78-K80, 2008.
44. Mori, S., et al., Charge-Transfer Processes in Dye-Sensitized NiO Solar Cells. Journal of Physical Chemistry C, 112(41): p. 16134-16139, 2008.
45. Lepleux, L., et al., Simple and Reproducible Procedure to Prepare Self-Nanostructured NiO Films for the Fabrication of P-Type Dye-Sensitized Solar Cells. Inorganic Chemistry, 48(17): p. 8245-8250, 2009.
46. Qin, P., et al., High Incident Photon-to-Current Conversion Efficiency of p-Type Dye-Sensitized Solar Cells Based on NiO and Organic Chromophores. Advanced Materials, 21(29): p. 2993-2996, 2009.
47. Nakasa, A., et al., A high voltage dye-sensitized solar cell using a nanoporous NiO photocathode. Chemistry Letters, 34(4): p. 500-501, 2005.
48. Duffy, N.W., et al., Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells. Journal of Physical Chemistry B, 104(38): p. 8916-8919, 2000.
49. Zhu, H., A. Hagfeldt, and G. Boschloo, Photoelectrochemistry of mesoporous NiO electrodes in Iodide/Triiodide electrolytes. Journal of Physical Chemistry C, 111(47): p. 17455-17458, 2007.
50. Gibson, E.A., et al., A p-Type NiO-Based Dye-Sensitized Solar Cell with an Open-Circuit Voltage of 0.35 V. Angewandte Chemie-International Edition, 48(24): p. 4402-4405, 2009.
51. Bolton, J.R., S.J. Strickler, and J.S. Connolly, Limiting and realizable efficiencies of solar photolysis of water. Nature, 316(6028): p. 495-500, 1985.
52. He, J.J., et al., Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Solar Energy Materials and Solar Cells, 62(3): p. 265-273, 2002.
53. Sumikura, S., et al., Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. Journal of Photochemistry and Photobiology a-Chemistry, 199(1): p. 1-7, 2008.
54. Li, L., et al., Double-Layered NiO Photocathodes for p-Type DSSCs with Record IPCE. Advanced Materials, 22(15): p. 1759-1762, 2010.
55. Cao, G., Nanostructures and nanomaterials: synthesis, properties, and application. 1st ed. imperial College Press. 53, 2004.
56. Liang, Z.H., Y.J. Zhu, and X.L. Hu, beta-nickel hydroxide nanosheets and their thermal decomposition to nickel oxide nanosheets. Journal of Physical Chemistry B, 108(11): p. 3488-3491, 2004.
57. Biju, V. and M.A. Khadar, Electronic structure of nanostructured nickel oxide using Ni 2p XPS analysis. Journal of Nanoparticle Research, 4(3): p. 247-253, 2002.
58. Tomellini, M., Final-states after Ni2p photoemission in NiO-comment. Journal of Electron Spectroscopy and Related Phenomena, 58(1-2): p. 75-78, 1992.
59. Sangaletti, L., L.E. Depero, and F. Parmigiani, On the non-local screening mechanisms in the 2p photoelectron spectra of NiO and La2NiO4. Solid State Communications, 103(7): p. 421-424, 1997.
60. Soriano, L., et al., Surface effects in the Ni 2p x-ray photoemission spectra of NiO. Physical Review B, 75(23): 233417, 2007.
61. Jarzebski, Z.M., Oxide Semiconductors. Pergamon, New York. P.150, 1973.
62. Dutta, T., et al., Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions. Journal of Applied Physics, 108(8): 083715, 2010.