簡易檢索 / 詳目顯示

研究生: 張姿婷
Chang, Chih-Ting
論文名稱: 台灣健保肌酸酐檢驗結果上傳流程之審析─以高屏業務組為例
Assessing the workflow of uploading Taiwan national health insurance laboratory data: creatinine in Kauping division as an example
指導教授: 呂宗學
Lu, Tsung-Hsueh
學位類別: 碩士
Master
系所名稱: 醫學院 - 公共衛生研究所碩士在職專班
Graduate Institute of Public Health(on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 119
中文關鍵詞: 健保檢驗結果資料庫資料清理資料品質血清肌酸酐
外文關鍵詞: National Health Insurance laboratory databases, Data cleaning, Data quality, Creatinine
相關次數: 點閱:93下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:台灣健保署於2015年開始要求醫療院所上傳檢驗結果資料,可以加值原本申報資料國際疾病分類編碼不準確與缺乏嚴重度資訊的限制。但是,健保署上傳規定持續改變,且無上傳檢驗結果資料品質相關資訊。
    目的:一、比較月批次上傳與日即時上傳資料格式差異與改變。二、檢視逐年不同醫療院所層級別上傳完整性。三、評估變項內容符合變項名稱的合理可接受程度。四、分析不同醫院上傳方式之改變與內容。
    方法:本研究是全人口描述性研究,擷取2015至2021年每年12月高屏業務組轄區醫療院所上傳「醫令代碼」為血清肌酸酐檢驗結果。首先計算不同年代上傳完整性,分子是檢驗結果上傳數目,分母是該檢驗項目的申報數目。接著針對「檢體採檢方法來源類別」與「檢驗項目名稱」進行檢視內容是否合理可接受。第三選擇18家醫院,進行不同條件的比對,探討月批次上傳與日即時上傳資料內容的差異。
    結果:一、關於兩種上傳方式格式差異,月批次有收載醫療費用申報欄位,日即時多了健保IC卡就醫資料內容,部分實驗室檢驗欄位名稱及型態有差異。二、不同層級別醫療院所逐年上傳完整性,在月批次資料中,醫學中心從2015年至2021年皆100%上傳,區域及地區醫院在2016至2018年是100%,但是在2019年下降至58%與52%,2021年是72%與49%。主要原因是從2019年至2021年所有醫院都100%改為日即時上傳。診所日即時上傳由2019年的33%增加至2021年的75%。三、「檢體採檢方法/來源/類別」共134種內容形式,經人工判定內容符合血液合理可接受率在醫中,區域,地區,診所2016年分別是99.96%,99.90%,93.90%,100.00%,2021年分別是99.95%,99.97%,99.99%,94.83%。「檢驗項目名稱」有440種形式,經人工判定名稱符合血清肌酸酐合理可接受率在醫中,區域,地區,診所2016年分別是100.00%,98.55%,99.64%,100.00%,2021年分別是99.87%,99.79%,99.46%,99.96%。四、18家醫院上傳型態可將其歸為「突然轉型」(3家區域醫院)與「漸進轉型」(3家醫學中心及12家區域醫院)兩類。三家醫學中心在2021年以月批次上傳數為分母,與日即時上傳沒有交集數為分子的比例分別是1.08%,6.69%,2.98%。反之,以日即時上傳數為分母,與月批次上傳沒有交集數為分子的比例分別是19.49%,14.51%,16.07%。
    結論:健保署2015年開始要求上傳檢驗結果,以申報血清肌肝酸數目為分母檢視完整性,由2015至2021年不同層級醫院上傳完整性都達100%,惟基層醫療院所上傳完整性到2021年還不到八成。由於沒有標準化申報格式,不同醫院上傳內容有相當大差異,但是經人工判斷合理可接受程度也都高達99%。月批次上傳與日即時上傳資料大多重疊,但是還是有少部分各自獨有資料,使用者應該都要採用。

    Background: National Health Insurance Administration requested contracted hospitals and clinics to upload laboratory results data in 2015. However, the regulations on upload changed afterward and little is known on the quality of uploaded laboratory results data.
    Objectives: This study had four objectives: First, to check the differences and changes in the formats of monthly batch and daily real-time upload. Seconds, to examine the completeness of upload by different level of hospitals and clinics from 2015 to 2021. Third, to assess the acceptability of the content with the variable name. Lastly, to evaluate the changes in number uploading by two methods in different hospitals.
    Methods: This population-based descriptive study first extracted order code of the serum creatinine from laboratory results database of December from 2015 to 2021 in each hospital and clinics in Kaohsiung, Pingtung and Penghu. We then manually checked the INSPECT MODE and then ASSAY ITEM NAME to determine whether the contents were acceptable. Thirdly, we used 12 key variables to examine the mapping between the monthly batch and daily upload data in 18 hospitals.
    Results: First, the format difference, the monthly batches uploads include the claim data, while daily real-time uploads can link to health insurance Card. Second, the completeness rate of monthly batch uploads in medical centers were 100% throughout the study years. For regional and district hospitals, the completeness rate was 100% from 2016 to 2018 and declined to 58% and 52%, respectively in 2019 and 72% and 49%, respectively in 2021. The main reason of the changes was that most hospitals changed to daily upload method. The completeness rates in clinics using daily upload method was 33% in 2019 and increased to 75% in 2021. Third, there were 134 forms for INSPECT MODE and 440 forms of ASSAY ITEM NAME with an acceptable rate of 85% and 75%, respectively. Fourth, the uploading patterns of 18 hospitals can be classified into two categories: “sudden transformation” and “gradual transformation”.
    Conclusions: By 2021, the completeness rate of uploads in clinics was still less than 80%. About 99% of the contents were acceptable. Most of the monthly batch uploads and daily real-time uploads data overlap, but there were still some data existed in only one uploaded dataset, therefore the users of these data should use both uploaded methods.

    摘要I 誌謝VI 圖目錄IX 表目錄X 附錄XII 第壹章 前言1 第一節 研究背景1 一、真實世界資料於健康照護領域之應用1 二、結合健保檢驗數據提升次級資料應用價值2 三、腎臟病影響全球人類健康3 第二節 研究重要性及目的5 第貳章 文獻探討6 第一節 台灣健保檢驗結果資料庫之推動歷程及應用6 一、健保檢驗結果資料庫推動歷程6 二、檢驗開立至健保收載資料後外釋流程9 三、健保檢驗結果資料庫應用障礙9 第二節 借助檢驗查結果強化腎臟病管理11 一、腎臟病定義11 二、臨床採用血清肌酸酐檢測腎功能11 三、健保檢驗結果於腎臟病管理優勢12 第三節 資料品質評估概述13 一、資料品質概念13 二、資料品質評估維度及策略14 第四節 大數據分析前的資料清理16 一、數據清理概念16 二、數據清理流程17 第五節 研究缺口21 第參章 研究方法22 第一節 資料來源22 第二節 研究設計與範圍22 第三節 資料處理過程23 一、確認研究主題之醫令代碼(ORDER_CODE)23 二、資料擷取(Data extraction)23 三、資料清理(Data cleaning)23 四、資料比對(Data comparison)24 第五節 名詞定義25 第六節 統計分析26 第肆章 研究結果27 第一節 月批次上傳與日即時上傳資料格式差異27 第二節 不同層級別醫療院所逐年上傳完整性32 第三節 「檢體採檢方法/來源/類別」及「檢驗項目名稱」變項名稱與內容合理可接受程度37 一、「檢體採檢方法/來源/類別」變項名稱與內容合理可接受程度37 二、「檢驗項目名稱」變項名稱與內容合理可接受程度41 第四節 醫院近5年檢驗結果資料上傳方式之改變46 第五節 3家醫學中心不同上傳方式之內容57 第伍章 討論73 第一節 月批次上傳與日即時上傳資料格式差異與改變73 第二節 不同醫療院所層級別逐年上傳完整性75 第三節「檢體採檢方法/來源/類別」及「檢驗項目名稱」變項內容符合變項名稱的合理可接受程度76 第四節 醫院近5年檢驗結果資料上傳方式之改變83 第五節 3家醫學中心不同上傳方式之內容討論85 第六節 研究強項86 第七節 研究限制86 第陸章 結論與建議88 第一節 結論88 第二節 建議88 參考文獻92 附錄96

    Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, Elm EV, Langan SM, Committee RW. The REporting of studies conducted using observational routinely-collected health Data (RECORD) statement. PLoS Med, 12(10), e1001885, 2015.
    Bikbov B, Purcell CA, Levey AS, Smith M, Abdoli A, Abebe M, Adebayo OM, Afarideh M, Agarwal SK, Agudelo-Botero M. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The lancet, 395(10225), 709-733, 2020.
    Cohen JF, Korevaar DA, Altman DG, Bruns DE, Gatsonis CA, Hooft L, Irwig L, Levine D, Reitsma JB,De Vet HC,M Bossuyt PM. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ open, 6(11), e012799, 2016.
    Corrigan-Curay J, Sacks L, Woodcock J. Real-world evidence and real-world data for evaluating drug safety and effectiveness. Journal of the American Medical Association, 320(9), 867-868, 2018.
    Eckerson WW. Data quality and the bottom line. TDWI Report, The Data Warehouse Institute, 1-32, 2002.
    Ehrenstein V, Petersen I, Smeeth L, Jick SS, Benchimol EI, Ludvigsson JF, Sørensen HT. Helping everyone do better: a call for validation studies of routinely recorded health data. Clinical Epidemiology, 8, 49, 2016.
    Hsieh CY, Su CC, Shao SC, Sung SF, Lin SJ, Yang Kao YH, Lai EC. Taiwan's National Health Insurance Research Database: past and future. J Clin Epidemiol, 11, 349-358, 2019.
    Kahn MG, Callahan TJ, Barnard J, Bauck AE, Brown J, Davidson BN, Estiri H, Goerg C, Holve E, Johnson SG. A harmonized data quality assessment terminology and framework for the secondary use of electronic health record data. Egems, 4(1), 2016.
    Lee PC, Kao FY, Liang FW, Lee YC, Li ST, Lu TH. Existing Data Sources in Clinical Epidemiology: The Taiwan National Health Insurance Laboratory Databases. Clinical Epidemiology, 13, 175-181, 2021.
    Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco AL, De Jong PE, Griffith KE, Hemmelgarn BR, Iseki K, Lamb EJ. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney international supplements, 3(1), 1-150, 2013.
    Makady A, de Boer A, Hillege H, Klungel O, Goettsch W. What Is Real-World Data? A Review of Definitions Based on Literature and Stakeholder Interviews. Value in Health, 20(7), 858-865, 2017.
    Miao Z, Sathyanarayanan S, Fong E, Paiva W, Delen D. An assessment and cleaning framework for electronic health records data. IIE Annual Conference. Proceedings, 2018.
    Sengupta S, Bachman D, Laws R, Saylor G, Staab J, Vaughn D, Zhou Q, Bauck A. Data quality assessment and multi-organizational reporting: tools to enhance network knowledge. eGEMs, 7(1),2019.
    Sherman RE, Anderson SA, Dal Pan GJ, Gray GW, Gross T, Hunter NL, LaVange L, Marinac-Dabic D, Marks PW, Robb MA. Real-world evidence—what is it and what can it tell us. New England Journal of Medicine, 375(23), 2293-2297, 2016.
    Sheu MJ, Liang FW, Li ST, Li CY, Lu TH. Validity of ICD-10-CM codes used to identify patients with chronic hepatitis B and C virus infection in administrative claims data from the Taiwan National Health Insurance outpatient claims dataset. J Clin Epidemiol, 12, 185, 2020.
    Shi X, Prins C, Van Pottelbergh G, Mamouris P, Vaes B, De Moor B. An automated data cleaning method for Electronic Health Records by incorporating clinical knowledge. BMC Medical Informatics and Decision Making, 21(1), 1-10, 2021.
    Terry AL, Stewart M, Cejic S, Marshall JN, de Lusignan S, Chesworth BM, Chevendra V, Maddocks H, Shadd J, Burge F. A basic model for assessing primary health care electronic medical record data quality. BMC Medical Informatics and Decision Making, 19(1), 1-11, 2019.
    Van den Broeck J, Argeseanu Cunningham S, Eeckels R, Herbst K. Data cleaning: detecting, diagnosing, and editing data abnormalities. PLoS Medicine, 2(10), e267, 2005.
    van Oosten MJM, Logtenberg SJJ, Edens MA, Hemmelder MH, Jager KJ, Bilo HJG, Stel VS. Health claims databases used for kidney research around the world. Clinical Kidney Journal, 14(1), 84-97, 2021.
    Weiskopf NG, Weng C. Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. Journal of the American Medical Informatics Association, 20(1), 144-151, 2013.
    Welch G, von Recklinghausen F, Taenzer A, Savitz L, Weiss L. Data cleaning in the evaluation of a multi-site intervention project. eGEMs, 5(3), 2017.
    Wen CP, Cheng TY, Tsai MK, Chang YC, Chan HT, Tsai SP, Chiang PH, Hsu CC, Sung PK, Hsu YH, Wen SF. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462,293 adults in Taiwan. Lancet, 371(9631), 2173-2182, 2008.
    台灣腎臟醫學會。慢性腎臟病防治手冊。行政院署國民健康局,2010。
    李俊姍:台灣C型肝炎醫療照護階流。台南市:國立成功大學公共衛生研究所碩士在職專班碩士論文,2021。
    許志成。2020台灣腎病年報,衛生研究院。2021。
    陳苓怡、郭美娟、黃尚志、蔡哲嘉、陳鴻鈞。臨床評估腎臟功能方法之優缺點。內科學誌,23(1),34-41,2012。
    衛生福利部中央健康保險署。健保服務-健保與就醫紀錄查詢-全民健康保險鼓勵醫事服務機構即時查詢病患就醫資訊方案(含上傳格式)。https://www.nhi.gov.tw/Content_List.aspx?n=264416706E2EF4DA&topn=5FE8C9FEAE863B46,2022。
    衛生福利部中央健康保險署。健保服務-健保與就醫紀錄查詢-健保醫療資訊雲端查詢系統-健保醫療資訊雲端查詢系統簡介。https://www.nhi.gov.tw/Content_List.aspx?n=B5612D76EB95D83D&topn=CA428784F9ED78C9,2022。
    衛生福利部中央健康保險署。健保服務-健保與就醫紀錄查詢-健康存摺My Health Bank-認識健康存摺。https://www.nhi.gov.tw/Content_List.aspx?n=3C3E3A796F31F010&topn=5FE8C9FEAE863B46,2022。
    衛生福利部統計處。死因統計-歷年統計-109年。https://dep.mohw.gov.tw/dos/lp-5069-113.html,2020。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE