| 研究生: |
吳思翰 Wu, Szu-Han |
|---|---|
| 論文名稱: |
金屬及金屬核殼型複合奈米粒子之製備 Prepartion of Metal Nanoparticles and Core-Shell Composite Nanoparticles |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 複合 、鎳 |
| 外文關鍵詞: | nickel, composite, MTX |
| 相關次數: | 點閱:66 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關金屬奈米粒子及核殼型複合奈米粒子之製備,前者主要在乙二醇系統和水相界面活性劑系統製備鎳及銅奈米粒子,探討製備變因及產品特性。後者在乙二醇系統中製備兼具有磁性及光學性質之鎳/金核殼型複合奈米粒子,並將其與藥物葉酸拮抗劑鍵結。
關於在乙二醇系統下製備鎳奈米粒子之研究,以聯胺為還原劑,在添加微量鹼的乙二醇溶液中,不需加入額外的惰性氣體及保護劑,即可製備出純鎳之金屬奈米粒子。由FTIR分析,得知乙二醇及其鎳催化分解產物在粒子表面形成保護層,可防止粒子的凝聚。由穿透式電子顯微鏡(TEM)、X射線繞射儀(XRD)、電子繞射、晶格影像、和超導量子干涉(SQUID)磁量儀分析得知,所得粒子為平均粒徑6~9nm、面心立方結構、且具超順磁特性之純鎳金屬奈米粒子。而隨著聯胺濃度的增加,粒徑隨著變小,當[N2H5OH]/[NiCl2]>20時,粒徑即維持不變。此外,所製得鎳奈米粒子對聯胺有催化分解成氫氣及氮氣的作用,在一大氣壓、25℃下其分解速率為3.1 nmol/h mg Ni。
關於在水相界面活性劑系統製備鎳奈米粒子之研究,以聯胺為還原劑,在添加微量鹼之CTAB水溶液中,不需通入額外的惰性氣體,即可製備出純鎳之金屬奈米粒子。由TGA分析,可推測CTAB以雙層結構被覆在鎳奈米粒子的表面,產生防止粒子凝聚的作用。由TEM、XRD、電子繞射、晶格影像、及SQUID磁量儀分析得知,所得粒子為平均粒徑10~14nm、面心立方結構、且具超順磁特性之純鎳金屬奈米粒子。而隨著聯胺濃度的增加,粒徑隨著變小,當[N2H5OH]/[NiCl2]> 20時,粒徑即維持不變。
關於在水相界面活性劑系統製備銅奈米粒子之研究,以聯胺為還原劑,並以氨水控制CTAB水溶液的pH值在10附近,不需通入額外的惰性氣體即可製備出純銅奈米粒子,銅離子濃度可高達0.2M。由TGA分析,可推測CTAB以雙層結構被覆在銅奈米粒子的表面,產生防止粒子凝聚的作用。由TEM、XRD、電子繞射、紫外光-可見光光譜、及化學分析電子光譜 (XPS)分析得知,所得粒子為平均粒徑5~15nm、面心立方結構之純銅金屬奈米粒子。而隨著聯胺濃度的增加,粒徑隨著變小,當[N2H5OH]/[NiCl2]> 40時,粒徑即維持不變。
關於在乙二醇系統中製備鎳/金核殼型複合奈米粒子及其與葉酸拮抗劑共價鍵結之研究,發現在無保護劑存在下,所製得之鎳/金核殼型複合奈米粒子有凝聚現象,但在有保護劑聚乙醯胺(PEI)存在下,即可製備出平均粒徑14.6nm、兼具磁性及光學性質、且分散均勻之鎳/金核殼型複合奈米粒子。XRD及電子繞射分析顯示所得之鎳/金核殼型複合奈米粒子為面心立方體結構。又鎳/金核殼型複合奈米粒子經表面修飾後,可與葉酸拮抗劑共價鍵結,平均一個鎳/金核殼型複合奈米粒子可鍵結高達3.63×104個葉酸拮抗劑分子。
This dissertation concerns the preparation of metal nanoparticles and core-shell composite nanoparticles. In the former, nickel and copper nanoparticles have been prepared in ethylene glycol and aqueous surfactant systems. The preparation conditions and product properties were investigated. In the latter, Ni@Au core-shell composites nanoparticles were prepared in ethylene glycol system and covalently bound with methotrexate (MTX).
In ethylene glycol system containing trace bases, Ni nanoparticles could be prepared by hydrazine reduction without the input of extra inert gases and the addition of protective agent. FTIR analysis revealed the formation of a protective layer from ethylene glycol and the Ni-catalyzed decomposition products, which prevented from the agglomeration of particles. The TEM, high-resolution TEM, XRD, electron diffraction pattern, magnetic analyses indicated the resultant particles were pure Ni nanoparticles with the mean diameter of 6-9 nm, fcc structure, and superparamagnetic property. With increasing N2H5OH concentration, The mean diameter decreased and approached a constant when [N2H5OH]/[NiCl2]>20. In addition, hydrazine was catalytically decomposed to hydrogen and nitrogen gases by the resultant Ni nanoparticles. The decomposition rate was 3.1 nmol/h mg Ni at 1 atm and 25℃.
In a pure aqueous CTAB solution containing trace bases, Ni nanoparticles could be prepared by hydrazine reduction without the input of extra inert gases. the synthesis of nickel nanoparticles without inert gases was studied. TGA study suggested the formation of a bi-layer structure on particle surface, which prevented from the agglomeration of particles. The TEM, high-resolution TEM, XRD, electron diffraction pattern, magnetic analyses indicated the resultant particles were pure Ni nanoparticles with mean diameters of 10-14 nm, fcc structure, and a superparamagnetic property. With increasing N2H5OH concentration, the mean diameter decreased and approached a constant when [N2H5OH]/[NiCl2]>20.
In a pure aqueous CTAB solution, Cu nanoparticles could be prepared by hydrazine reduction without the input of extra inert gases. The key point was the use of ammonia solution to adjust the solution pH up to 10. The concentration of Cu2+ ions allowable was as high as 0.2 M. TGA study suggested the formation of a bi-layer structure on particle surface, which prevented from the agglomeration of particles. The TEM, XRD, electron diffraction pattern, UV-VIS spectrum, and XPS analyses indicated the resultant particles were pure Cu nanoparticles with mean diameter of 5-15 nm and fcc structure. With increasing N2H5OH concentration, the mean diameter decreased and approached a constant when [N2H5OH]/[NiCl2]>40.
In ethylene glycol, Ni@Au core-shell composites nanoparticles were prepared. In the absence of protective agent, particle agglomeration was observed. In the presence of polyethyleneimine (PEI) as a protective agent, monodisperse Ni@Au composite nanoparticles with a mean diameter of 14.6 nm were obtained. After surface modification, Ni@Au composite nanoparticles were covalently bound with methotrexate (MTX). Averagely 3.63×104 MTX molecules could be bound on each Ni@Au composite nanoparticle.
1. 科學人雜誌,1 (2003)。
2. 李世光,孫美芳,”我國發展新興科技微機電系統與奈米技術的人才培育與發展策略初探”,生物醫學報導,14,5 (2002)。
3. 牟中原,陳家俊,”奈米材料研究發展”科學月刊,28,281 (2000)。
4. 廖建勛,”奈米材料的發展動態”,化工資訊月刊,12,27 (1998)。
5. 呂世源,”奈米新世界”,科學發展月刊,359,4 (2002)。
6. 林景正,賴宏仁,”奈米材料與發展趨勢”,工業材料, 153,95 (1999)。
7. 工研院工業材料研究所,”材料奈米科技專刊”,台北:經濟部技術處 (2001)。
8. 陳郁文,”納米材料在觸媒上的應用”,化工,5,21 (1998)。
9. 莊萬發編撰,超微粒子理論應用,台南:復漢(1995)。
10.Choy, J. H., Han, Y. S. and Song, S. W., “Preparation and magnetic properties of ultrafine SrFe12O19 particles derived from a metal citrate complex”, Mater. Lett., 120, 64 (1993).
11.Huang, J. M., Yang,Y., Yang, B., Liu, S.Y. and Shen, J. C., “Synthesis of the CdS nanoparticles in polymer networks “, Polym. Bull., 36, 337 (1996).
12.Jason, R., Babcock, Robert, W. and Lawrence R., “A heterocumulene metathesis route to Cd[ESiMe3]2 and passivated CdE (E = S and Se) nanocrystals”, Chem. Mater., 10, 2027 (1998).
13.Lee, L. and Seddon, G. Stephens, F., Stained Glass, New York (1976).
14.Toshima, N. and Yonezawa, T., “Bimetallic nanoparticles : novel materials for chemical and physical applications”, New. J. Chem., 1179 (1998).
15.吳明立,微乳化系統製備雙金屬奈米粒子之研究,國立成功大學化學工程研究所博士論文 (2001)。
16. Graffet, E., Tchikart, M., Elkedim, O. and Rahouadj, R., “Nanostructural materials formation by mechanical alloying morphologic analysis based on transmission and scanning electron-microscopic observations “, Mater. Charact., 36, 185 (1996).
17. Amulyavichus, A., Daugvila, A., Davidonis, R. and Sipavichus, C., “Study of chemical composition of nanostructural materials prepared by laser cutting of metals “, Fiz. Met. Metalloved., 85, 111 (1998).
18. Balckborrow, J. R. and Young, D., Metal Vapor Synthesis, NewYork (1979).
19. 史宗淮,”微粉製程技術簡介”,化工,42,28 (1995)。
20. 張志焜,崔作林,納米技術與納米材料,北京:國防工業(2000)。
21. 蘇品書,超微粒子材料技術,台南:復漢(1998)。
22. Sugimoto, T., ”Preparation of monodispersed colloidal particles”, Adv. Colloid Interface Sci., 28, 65 (1987).
23. Ayyappan, S., Gopalan, R. S., Subbanna, G. N. and Rao, C. N. R., ” Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts”, J. Mater. Res., 12, 398 (1997).
24. Zhang, Z., Zhao, B. and Hu, L., “PVP protective mechanism of ultrafine silver powder synthesized by chemical-reduction processes”, J. Solid State Chem., 121, 105 (1996).
25. Teranishi, T., Nakata, K., Miyake, M. and Toshima, N., ” Promotion effect of polymer-immobilized neodymiumions on catalytic activity of ultrafine palladium particles”, Chem. Lett., 4, 277 (1996).
26. Li, X., Lu, G. and Li, S., “Synthesis and properties of strontium ferrite ultrafine powders”, J. Mater. Sci. Lett., 15, 397 (1996).
27. Lee, J., Isobe, T. and Senna, M.,” Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH“, J. Colloid Interface Sci., 177, 490 (1996).
28. Ishizuki, N., Torigoe, N., Esumi, K. and Meguro, K.,” Characterization of precious metal particles prepared using chitosan as a protective agent”, Colloids and Surfaces, 55, 15 (1991).
29. Osseo-Asare, K. and Arriagada, F. J., “Nanosize silica via controlled hydrolysis in reverse micellar systems”, Ceram. Trans., 12, 3 (1990).
30. Meyer, M., Wallberg, C., Kurihara, K. and Fendler, J. H., J. Chem. Soc., Chem. Commun., 90 (1984).
31. Fendler, J. H., “Atomic and molecular clusters in membrane mimetic chemistry”, Chem. Rev., 87, 877 (1987).
32. Kitahara, A., Kazuhiko, K. and Kijiro, K.,” Formation of ionic water oil microemulsions and their application in the preparation of CaCO3 particles”, J. Colloid Interface Sci., 122, 78 (1988).
33. Osseo-Asare, K. and Arriagada, F. J., “Preparation of SiO2 nanoparticles in a nonionic reverse micellar system”, Colloids and Surfaces, 50, 321 (1990).
34. Sarathy, K. V., Kulkarni, G. U. and Rao, C. N. R., “A novel method of preparing thiol-derivatized nanoparticles of gold, platinum and silver forming superstructures”, Chem. Commun., 537 (1997).
35. Yonezawa, T., Tominaga, T. and Richard, D.,” Stabilizing structure of tertiary amine-protected rhodium colloid dispersions in chloroform”, J. Chem. Soc. Dalton Trans., 783 (1996).
36.Reetz, M. T., Winter, M. and Tesche, B.,” Regioselective palladium-catalyzed coupling reactions of vinyl chlorides with carbon nucleophiles”, Chem. Commun., 6,535 (1997).
37. 張立德,納米材料,北京:化學工業 (2000)。
38. Hofman-Caris, C. H. M., “Polymers at the surface of oxide nanoparticles”, New J. Chem., 18, 1087 (1994).
39. Sanchez, C., Soler-Illia, G. J.de A. A., Ribot, F., Lalot, T., Mayer, C. R. and Cabuil, V., “Designed hybrid organic inorganic nanocomposites from functional nanobuilding blocks”, Chem. Mater., 13, 3061 (2001).
40. Niemeyer, C. M., “Nanoparticles, protein, and nucleic acid:biotechnology meets materials science”, Angew. Chem. Int. Ed., 40, 4128 (200l).
41. Boutonnet, M., Kizling, J., Mintsa-Eya, V., Choplin, A., Touroude, R., Maire, G. and Stenius, P., “Monodisperse colloidal metal particlesfrom nonaqueous solutions catalytic behavior in hydrogenation of but-1-Ene of platinum, palladium, and rhodium particles supported on pumice”, J. Catalysis, 103, 95 (1987).
42. Henglein, A., “Small particle research physicochemical properties of extremely small colloidal metal and semiconductor particles”, Chem. Rev., 89, 1861 (1989).
43. Ezaki, H., Nambu, T., Morinaga, M., Udaka, M. and Kawasaki, K., “Development of low hydrogen overpotential electrodes utilizing metal ultrafine particles”, Int. J. Hydrogen, 21, 877 (1996).
44. Kawahara, M., Ogawa, S. and Ichikawa, S., “Effect of palladium particle size on the appearance of superstructure of graphite in palladium/graphite model catalys”, Surf. Sci., 344, 259 (1995).
45. Rodriguez, N. M., Oh, S. G., Dalla-Betta, R. A. and Baker, R. T. K.,“In-situ electronmicroscopy studies of palladium supported on Al2O3, SiO2, and ZrO2 in oxygen”, J. Catalysis, 157, 676 (1995).
46.郭清癸,黃俊傑,牟中原,”金屬奈米粒子的製造”物理雙月刊,23,614,(2001)。
47. Zhu, Y., Qian, Y., Li, X. and Zhang, M.,” Gamma radiation synthesis and characterization of polyacrylamide silver nnocomposites”, Chem. Commun., 1081 (1997).
48. Esumi, K., Matsuhisa, K. and Torigoe, K., “Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photoinitiator“, Langmuir, 11, 3285 (1995).
49. Mizukoshi, Y., Okitsu, K., Maeda, Y., Yamamoto, T. A., Oshima, R. and Nagata, Y.,” Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution”, J. Phys Chem. B, 101, 7033 (1997).
50. Mafuné, F., Kohno, J. Y., Takeda, Y., Kondow, T. and Sawabe, H., “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant”,” Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions”, J. Phys Chem. B, 105, 5114 (2001).
51. Bonet, F., Delmas, V., Grugeon, S., Urbina, R. H., Silvert, P. Y. and Tekaia-Elhsissen, K.,“Finely divided platinum gold alloy powders prepared in ethylene glycol”, Nanostructured Mater., 11, 1277 (1999).
52. Chen, D. H. and Hsieh, C. H., J. Mater. Chem., 12, 2412 (2002).
53. Yu, Y. Y., Chang, S. S., Lee, C. L. and Wang, C. R. C.,” Gold nanorods electrochemical synthesis and optical properties”, J. Phys. Chem. B, 101, 6661 (1997).
54. 葉晨聖,化工資訊與商情,7,64,(2004)。
55. Wang, Y. and Toshima, N., “Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures”, J. Phys. Chem. B, 101, 5301 (1997).
55. Haus, J. W., Zhou, H. S., Takami, S., Hirasawa, M., Honma, I. and Komiyama, H., “Enhanced optical properties of metal coated nanoparticles”, J. Appl. Phys., 73, 1043 (1993).
56. Jackson, J. B. and Halas, N. J., “Silver nanoshells: variations in morphologies and optical properties”, J. Phys. Chem. B, 105, 2743 (2001).
57. Westcott, S. K., Oldenburg, S. J., Lee.T. R. and Halas, N. J., “Construction of simple gold nanoparticle aggregates with controlled plasmon plasmon interactions”, Chem. Phys. Lett., 300, 524 (1999).
58.Oldenburg, S. J., Averitt, R. D., Westcott, S. L. and Halas, N. J.,“Nano engineering of optical resonances”, Chem. Phys Lett., 288 , 243 (1998).
59. Westcott, S. L., Oldenburg, S. J., Lee, T. R. and Halas, N. J., ”Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces”, Langmuir, 14, 5396 (1998).
60. Hofineister, H., Miclea, P. T. and Morke, W., “Metal nanoparticle coating of oxide nanospheres for core-shell structures”, Part. Part. Syst. Charact., 19, 359 (2002).
61. Mauik, K., Mandal, M., Pradhan, N. and Pal, T., “Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of “core-shell” type structures”, Nano Letters, 6, 319 (2001).
62. Ng, K. H. and Penner, R, M., “Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation”, J. Electro. Anal.Chem., 522, 86 (2002).
63. Gwak, J. H., Chae, S. J. and Lee, M., “Surface plasmon absorption characteristics and nonlinear optical properties of of silver/copper codoped silica thin films”, Nanostrctured. Mater., 8,1149 (1997).
64. Lin, J., Zhou, W. L., Kumbhar, A.,J. Wiemann, J., Fang, J. Y. and Carpenter, E. E. O'Connor, C. J., “Gold-coated iron (Fe@Au) nanoparticles: synthesis, characterization, and magnetic field induced self-assembly”, J. Solid State Chem., 159, 26 (2001).
65. Sershen, S. R., Westcott, S. L., Halas, N. J. and West, J. L., “Temperature sensitive polymer-nanoshell composites for photothermally modulated drug delivery”, J. Biomed Mater. Res., 5, 293 (2002).
66. 陳東煌,” 複合奈米粒子”,化工資訊與商情,3,58,(2003)。
67. Chen, D. H., Lin,J. P., Wu, S. H. and Wang, C. T., “A simple Route for Formation of continuous Ni nanoshells on polymer microspheres”, Chem. Lett., 32, 662 (2003).
68. Toshima, N. and Yonezawa, T., “Bimetallic nanoparticles – novel materials for chemical and physical applications”, New. J. Chem., 1179 (1998).
69. Chen D. H. and Wu S. H., “Synthesis of nickel nanoparticles in water -in- oil microemulsions”, Chem. Mater., 12, 1354 (2000).
70. Zhu, Y., Qian, Y, Zhang, Z., Chen, Z.,Chen, M. and Zhou, G., “Gamma radiation sol gel synthesis of glass metal nanocomposites”, J. Mater. Sci. Lett., 13, 1243 (1994).
71. Ely, T. O., Amiens, C. and Chaudret, B., “Synthesis of nickel nanoparticles. influence of aggregation induced by modification of poly(vinylpyrrolidone), chain length on their magnetic properties”, Chem. Mater., 11, 526 (1999).
72. Degen, A. and Macek, J., “Preparation of submicrometer nickel powders by the reduction from nonaqueous media”, NanoStructured Mater., 12, 225 (1999).
73. Li, Y, D., Li, C., W., Wang, H., R., Li, L., Q. and Qian, Y, T., “Preparation of nickel ultrafine powder and crystalline film by chemical control reduction”, Mater. Chem. Phys., 59, 88 (1999).
74. Xia, B., Lenggoro, W. and Okuyama, K., ” Preparation of nickel powders by spray pyrolysis of nickel formate”, J. Am. Ceram. Soc., 84, 1425 (2001).
75. Sapieszko, R., S. and Matijevic, E., Corrosion-Nace, 36, 522 (1980).
76. Wang, C., Zhang, X. M., Qian, X. E, Xie, Y, Wang W. Z. and Qian, Y T., “Preparation of nanocrystalline nickel powders through hydrothermal reduction method”, Mater. Res. Bull., 33, 1747 (1998).
77. Koltypin, Y, Katabi, G.., Cao, X., Prozorov , R. and Gedanken, A., “Sonochemical preparation of amorphous nickel”, J. Non-Crystalline Solids, 201, 159 (1996).
78. Fievet, F., Lagier, J. P. and Blin, B., “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles”, Solid State Ionics, 32/33, 198 (1989).
79. Kurihara, L. K., Chow G. M. and Schoen, P. E., “Nanocrystalline metallic powders and films produced by the polyol method”, Nanostructured Mater., 5,607 (1995).
80. Hegde, M. S., Larcher, D., Dupont, L., Beaudoin, B., Tekaia-Elhsissen, K. and Tarascon, J. M., ”Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders”, Solid State Ionics, 93, 33 (1997).
81. Pedersen, A. S., Sethi, S. A. and Eldrup, M., “Thermal dissociation of ultrafine passivated Ni powder”, Nanostmctured Mater., 5, 79 (1995).
82. Karmhag, R., Niklasson, G. A. and Nygren, M., “Oxidation kinetics of nickel nanoparticles”, J. Appl. Phys., 89, 3012 (2001).
83. Yamasaki, N. and Huanzhen, L., “Reduction kinetics of Ni(OH)2 to nickel powder preparation under hydrothermal conditions”, Metall. Trans. B, 24, 557 (1993).
84. Toshima, N. and Lu, P., “Synthesis and catalysis of colloidal dispersions of Pd/Ni bimetallic clusters”, Chem. Lett., 9, 729 (1996).
85. Pal, T., Sau, T. K. and Jana, N. R., “Reversible formation and dissolution of silver nanoparticles in aqueous surfactant media”, Langmuir, 13, 1481 (1997).
86. Saida, J., Inoue, A. and Masumoto, T., ”The formation of nanostructured materials by consolidating ultrafine amorphous alloy particles prepared by chemical-reduction”, Mater. Sci. Eng., 179, 577 (1994).
87. Hu, Z., Shen, J. and Hsia, Y., ”Spherical amorphous nickel-phosphorus alloy particles with uniform size prepared at room-temperature”, J. Non-Crystalline Solids, 159, 88 (1993).
88. Michalski, J., Konopka, K. and Trzaska, M., “Nanoparticles of Ni on Al2O3 ceramic powder coated by chemical reactions”, Acta. Phys. Pol. A, 102, 181 (2002).
89. Shen, J., Hu, Z., Zheng, L., Li, Z. and Chen, Y., “Fe-P-B ultrafine amorphous particles produced by chemical-reduction”, Appl. Phys. Letts., 59, 3545 (1991).
90. Hu, Z., Hisa, Y, Zheng, J., Shen, J., Yan, Q. and Dai, L., “A study of Fe-Ni-B ultrafine alloy particles produced by reduction with borohydride”, J. Appl. Phys., 70, 436 (1991).
91.陳東佑,銅奈米粒子的表面修飾研究,國立成功大學化學系碩士論文,(2000)。
92. Crtis, A. C., Duff, D. G, Edwards, P. P., Jefferson, D. A., Johnson, B. F. G, Kirkland, A. I. and Wallace, A. S., “Preparation and structural characterization of an unprotected copper sol”, J. Phys. Chem., 92, 2270 (1998).
93. Hirai, H., Wakabayashi, H. and Komiyama, M., “Preparation of polymer protected colloidal dispersions of copper”. Bull. Chem. Soc Jan., 59, 367 (1986).
94. Huang, H. H., Yan, F. Q., Kek, Y. M., Chew, C. H., Xu, G. Q., Ji, W., Oh, P. S. and Tang, S. H., “Synthesis, characterization, and nonlinear optical properties of copper nanoparticles”, Langmuir, 13, 172 (1997).
95. Komarov, V. P., Lazarev, V. B. and Shaplygin, I. S., “Finely divided copper powder”, Inorg. Mater., 84, 669 (1984).
96. Huang, C. Y. and Sheen, S. R., “Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape”, Mater. Lett., 30, 357 (1997).
97. Kapoor, S., Joshi, R. and Mukheiiee, T., “Influcencee of I- anions on the formation and stabilization of copper nanoparticles”, Chem. Phys. Lett., 354, 443 (2002).
98. Jackelen, A. M. L., Jungbauer, M. and Glavee, G. N., “Nanoscale materials synthesis. 1.Solvent effects on hydridoborate reduction of copper ions”, Langmuir, 15, 2322 (1999).
99. Floriano, P. N., Noble, C. O., Schoonmaker, J. D., Poliakoff, M. and McCarley, E. R. L., “Cu(0) nanoclusters derived from poly (propylene imine) dendrimer complexes of Cu(II)”, J. Am. Chem. Soc., 723, 10545 (2001).
100.Aslam, M., Gopakumar, G, Shoba, T. L., Mulla, I. S., Vijayamohanan, K., Kulkami, S. K., Urban, J. and Vogel, W., “Formation of Cu and Cu2O nanoparticles by variation of the surface ligand: Preparation, structure, and insulating to metallic transition”, J. Colloid Interface Sci., 255, 79 (2002).
101.Hsu, W. P., Yu R. and Matijevic, E., “Preparation and characterization of uniform particles of pure and coated metallic copper”, Powder Technology, 63, 265 (1990).
102.Mamoory, R. S., Demopoulos, G. P. and Drew, A. L., “Preparation of fine copper powders from organic media by reaction with hydrogen under pressure:part II..the kinetics of particle nucleation, growth and dispersion”, Metal and Mate. Trans. B, 27B, 585 (1996).
103.Chen, P., Wu, X., Lin J. and Tan, K. L., “Synthesis of Cu nanoparticles and microsized fibers by using carbon nanotubes as a template”, J. Phys. Chem. B, 103,4559 (1999).
104.Lisiecki I. and Pileni, M. P., “Synthesis of copper metallic clusters using reverse micelles as microreactors”, J. Am. Chem. Soc., 115, 3887 (1993).
105.Pileni, M, P. and Lisiecki, I., “Nanometer metallic copper particle synthesis in reverse micelles”, Colloids Surf. A., 80, 63 (1993).
106.Pileni, M. P., T. G. Krzywicki, T. G, Tanori, J, Filankembo, A. and Dedieu, J. C., “Template design of microreactors with colloidal assemblies: control the growth of copper metal rods”, Langmuir, 14, 7359 (1998).
107.Limin, Q., Jiming, M. and Julin, S., “Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions”, J. Colloid Interface Sci., 186, 498 (1997).
108.Qiu, S., Dong, J. and Chen, G., “Preparation of Cu nanoparticles from water-in-oil microemulsions”, J. Colloid Interf. Sci., 216, 230 (1999).
109.Joshi, S.S., Patil, S. F., Lyer V. and Mahumuni, S., “Radiation induced synthesis and characterization of copper nanoparticles”, NanoStructured Mater., 10, 1135 (1998).
110.Henglein, A., “Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu(CN)2”, J. Phys. Chem. B., 104, 1206 (2000).
111.Kapoor, S., Palit, D. K. and Mukherjee, T., ”Preparation, characterization and surface modification of Cu metal nanoparticles”, Chem. Phys. Lett., 355, 383 (2002).
112.Yeh, Y H., Yeh. M. S., Lee, Y P. and Yen, C. S., “Formation of Cu nanoparticles from CuO powder by laser ablation in 2-propanol”, Chem. Lett., 27, 1183 (1998).
113.Yeh, M. S., Yang, Y S., Lee.Y. P., Lee, H. F., Yeh, Y H. and Yeh, C. S., “Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-Propanol”, J. Phys. Chem. B, 103, 6851 (1999).
114.Dhas, N. A., Raj, C. P. and Gedanken, A., ”Synthesis, characterization, and properties of metallic copper nanoparticles”, Chem. Mater., 10, 1446 (1998).
115.Lee, D. W., Ha, G. H. and Kim, B. K., “Synthesis of Cu-Al2O3 nano- composite powder”, Scripta materials, 44, 2137 (2001).
116.Nasibulin, A. G., Kauppinen, E. J., Brown, D. P. and Jokiniemi, J. K., “Nanoparticle formation via copper(II) acetylacetonate vapor decomposition in the presence of hydrogen and water”, J. Phys. Chem. B, 105, 11067 (2001).
117.李昂,化工資訊月刊,10,(2001)。
118.Riepold, R., Kreuter, J., Guggenbuhl, P. and Robinson, J. R., “Distribution of poly-hexyl-2-cyano-[3-14C]acrylate nanoparticles in healthy and chronically inflamed rabbit eyes”, Int. J. Pharm, 54, 149 (1989).
119.Courveur, P., Kante, B., Grislain, L. and Speiser, P., “Toxicity of polyalkylcyanoacrylate nanoparticles II: Doxorubicinloaded nanoparticles”, J. Pharm. Sci., 71, 790 (1982).
120.王志光,高雄醫學大學e快報,第二十期 (2004)。
121.馬振基,奈米材料科技原理與應用,全華出版社 (2003)
122 Pal, T., Sau, T. K. and Jana, N. R., “Reversible formation and dissolution of silver nanoparticles in aqueous surfactant media”, Langmuir, 13, 1481 (1997)
123.Yu, Y. Y., Chang, S. S., Lee, C. L. and Wang, C. R. C.,“Gold nanorods electrochemical synthesis and optical properties”, J. Phys. Chem. B, 101, 6661 (1997).
124.Chen, C. C., Chao, C. Y. and Lang, Z. H., “Simple solution phase synthesis of soluble CdS and CdSe nanorods”, Chem. Mater., 12, 1516 (2000).
125.Jana, N. R., Gearheart, L. and Murphy, C. J., “Seed mediated growth approach for shape controlled synthesis of spheroidal and rod like gold nanoparticles using a surfactant template”, Adv. Mater., 13, 1389 (2001).
126. Nikoobakht, B. and El-Sayed, M. A., “Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods”, Langmuir, 17, 6368 (2001).
127.Kameo, A., Suzuki, A., K. Torigoe, K. and Esumi, K., “Fiber like gold particles prepared in cationic micelles by UV irradiation: effect of alkyl chain length of cationic surfactant on particle size”, J. Colloid Interface Sci., 241, 289 (2001)
128.Turkevich, J. and Kirn, G., Science, 169, 870 (1970).
129.Goia, D. V. and Matijevic, E., “Preparation of monodispersed metal particles”, New J. Chem., 22, 1203 (1998).
130.Ayyappan, S., Subbanna, G. N., Srinvasa-Gopalan, R. and Rao, C. N. R., ”Nanoparticles of nickel and silver produced by the polyol reduction of the Metal-Salts Intercalated in Montmorillonite”, Solid State Ion., 84,271. (1996).
131.Hegde, M. S., Larcher, D., Dupont, L., Beaudoin, B., Tekaia-Elhsisen, K. and Trascon, J. M., ”Synthesis and chemical Reactivity of polyol prepared monodisperse nickel powders”, Solid State Ionics., 93, 33 (1997).
132.Bonet, F., Delmas, V, Grugeon, S., Hen-era Urbina, R. and Silvert, P. Y,”Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol”, Nanostructuired Mater., 11, 1277 (1999).
133.Ducamp-Sanguesa, C., Herrera-Urbina, R. and Figlarz, M., “Synthesis and characterization of fine and monodisperse silver particles of uniform shape”, J. Solid State Chem., 100, 272 (1992).
134.Silvert, P. Y., Herera-Urbina, R., Duvauchelle, N., Vjayakrishnan, V. and Tekaia-Elhsissen, K., “Preparation of colloidal silver dispersions by the polyol process I. synthesis and characterization”, J. Mater. Chem., 6, 573 (1996).
135.Silvert, P. Y, Herera-Urbina, R. and Tekaia-Elhsissen, K., “Preparation of colloidal silver dispersions by the polyol process. II. synthesis and characterization”, J. Mater. Chem., 7, 293 (1997).
136.Silvert, P. Y. and Tekaia-Elhsissen, K., ”Synthesis of monodisperse submicronic gold particles by the polyol process”, Solid State Ionics, 82, 53 (1995).
137.Lindmanm, B. and Wennerstrom, H., “Micells : Amphiphile Aggregation in Aqueous Solution”, (1980).
138. Lloyd, D. R. and Bums, C. M., “Coupling of acrylic polymers and collagenby use of a water soluble carbodiimide. I. Optimization of reaction conditions”, J. Poly. Sci. Poly. Chem. Ed., 17, 3459 (1979).
139. Bickerstaff, G. E., Immobilization of Enzymes and Cells, 1-11. Humana Press Inc. (1996).
140.陳治誠,”生化感測器技術簡介”,科儀新知,15,71 (1993)。
141.Lloyd, D. R. and Bums, C. M., “Coupling of acrylic polymers and collagen by use of a water-soluble carbodiimide. II: Investigations of the coupling mechanism”, J. Poly. Sci. Poly. Chem. Ed., 17, 3473 (1979).
142.陳育裕,鐵氧超微磁粉之製備研究,國立成功大學化學工程研究所碩士論文 (1998)。
143.黃忠良,磁性陶瓷,臺南:復漢 (1999)。
144.鄭振東,實用磁性材料,臺北:全華 (1999)。
145.張煦,李學養,磁性物理學,臺北:聯經 (1982)
146.Cullity, B. D., Introduction to Magnetic Material, London: Addison-Wesley (1972).
147.黃忠良,磁性流體理論應用,臺南:復漢 (1999)。
148.Huang, Z. Y., Mills, G. and Hajek, B., “Spontaneous formation of silver particles in basic 2-propanol”, J. Phys. Chem., 97, 11542 (1993).
149.Shorthouse, L. J., Roberts, A. J. and Raval, R., ” Propan-2-ol on Ni(111): identification of surface intermediates and reaction products “, Surface Sci., 37, 480, (2001).
150. Shaft, V. P. M., Gedanken, A., Prozorov, R. and Balogh, J., ” Sonochemical preparation and size dependent properties of nanostructured CoFe2O4 particles”, Chem. Mater., 10, 3445 (1998).
151.Vanleeuwen, D. A., Vanruitenbeek, J. M., Dejongh, L. J., Ceriotti, A., Pacchioni, G., Haberlen, O. D. and Rosch, N., ”Quenching of magnetic moments by ligand metal interactions in nanosized magnetic metal clusters “, Phys. Rev. Lett., 73, 1432 (1994).
152.Chen, X., Zhang, T., Ying, P., Zheng, M., Wu, W., Xia, L., Li, T., Wang, X. and Li, C., “A novel catalyst for hydrazine decomposition: molybdenum carbide supported on γ-Al2O3”, Chem. Commun., 3, 288 (2002).
153. 林有銘、雷敏宏,觸媒與製程,5,35,(1997)。
154.Nikoobakht, B. and El-Sayed, M. A., ” A small angle neutron scattering study of spherical and wormlike micelles formed by poly(oxyethylene) based diblock copolymers”, Langmuir, 17, 6368 (2001).
155.Nikoobakht, B. and El-Sayed, M. A., “Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods”, Langmuir, 17, 6368 (2001)
156.Toshima, N. and Wang, Y., “Preparation and catalysis of novel colloidal dispersions of copper/noble metal bimetallic clusters”, Langmuir, 10, 4574, (1994).
157.Subr, V., Strohalm, J., Hirano, T., Ito, Y. and Ulbrich, K., ”Poly [N-(2 –hydroxypr opyl ) methacrylamide] conjugates of methotrexate synthesis and in vitro drug release”, J. Contr. Rele., 49, 123 (1997)