簡易檢索 / 詳目顯示

研究生: 林秉寬
Lin, Ping-Kuan
論文名稱: 氮化鎵極性於光電解水產氫之研究
The polarization of GaN on water splitting for hydrogen generation through photoelectrolysis
指導教授: 賴韋志
Lai, Wei-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 74
中文關鍵詞: 氮化鎵氮化鋁鎵光電解水
外文關鍵詞: GaN, AlGaN, Water splitting
相關次數: 點閱:74下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是利用三五族氮化鎵材料製作光電解電池之工作電極光電解水產生氫氣。實驗設計上我們分別針對不同極性氮化鎵電極的交流阻抗與光電流密度量測作分析,也在不同極性氮化鎵上增加一層氮化物層,藉此比較有無氮化物層對光電解水產氫的影響,經過各種情況下的實驗結果,釐清氮化鎵材料光電解水產氫的反應機制,進而改善光電化學產氫的效率。
    首先我們將不同極性的氮化鎵去做光電解水反應,同時藉由交流阻抗分析出其平帶電壓,而平帶電壓影響著光電流的產生與液半接面上能帶彎曲程度,透過光電解水反應發現光電流密度會因為極性的不同而有不同的表現,再加上平帶電壓的量測,因而推測主要原因來自於液半接面上能帶彎曲的影響。而我們在表面上增加未摻雜的氮化鎵,發現光電流密度卻沒有明顯增加,推斷是因為加了此層反倒沒有增加極化電場的強度,但發現未摻雜氮化鎵半極性面中有些面的極化電場較小,也因此產生的光電流密度較小。而我們也在表面上增加不同結構的氮化鋁鎵,對於一般結構的氮化鋁鎵本身對氮化鎵就晶格不匹配,所以再接面處會產生壓電極化效應,導致極化電場的產生。而我們也使用漸變結構的氮化鎵,使得能帶彎曲更劇烈,產生的內建電場越大,越有利於光電流的產生。

    Hydrogen generation through direct photoelectrolysis of water was studied using photoelectronchemical cells made of different facets of free-standing polar GaN system. To build the fundamental understanding at the differences of surface photochemistry afforded by the GaN polar surfaces, we correlated the relationship between the band structure and photoelectrochemical performance on the different polar facets. The photoelectrochemical measurements clearly revealed that the Ga-polar surface had a more negative onset potential relative to the N-polar and semipolar surface due to the much negative flat-band potential. However,the flat-band potential depend on band bending at the semiconductor-liquid junction. We also use two typical layers of AlGaN/GaN heterostructures as working electrode on photoelectronchemical cells. For AlGaN/GaN heterostrucrtures, we use the bulk layer and the gradual changed layer on different facets of free-standing polar GaN system. The photoelectrochemical measurements exhibit the semipolar GaN with gradual changed AlGaN have the highest photocurrent than the other samples at bias zero voltage. Therefore, we simulate the band bending at bias zero voltage. Though the simulation, we think the photogenerated holes on the valence band are more than the others. Because the amount of the holes which spreads to the electrolyte determine the photocurrent on the photoelectronchemical cells. Therefore, the key parameter of the photoelectronchemical cells is the amount of the holes on the valence band by bending the band diagram.

    摘要 I 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 序論 1 1.1 前言 1 1.2 研究動機與目的 2 Reference 4 第二章 理論基礎 6 2.1 半導體的介紹及分類 6 2.2 半導體/電解液界面平衡時的能帶分佈 9 2.3 平帶電位 13 2.4 極化電場 16 2.5 光電化學系統 20 2.6 入射光轉換率量測 (Incident Photo to Current Conversion Efficiency, IPCE) 25 References 26 第三章 實驗設置與研究方法 28 3.1 光電化學量測裝置 28 3.2 電流-電壓特性量測 31 3.3 交流阻抗量測與Mott-Schottky分析 33 3.4 光電化學元件(工作電極)製作 35 3.4.1 光電化學元件結構 35 3.4.2 半極性面製程步驟 38 References 43 第四章 實驗結果與討論 44 4.1 極性氮化鎵對光電化學反應特性分析 44 4.1.1 交流阻抗分析量測結果 44 4.1.2 光電流分析量測結果 49 4.2 不同氮化物對極性氮化鎵光電解水產氫之影響 54 4.2.1 未摻雜氮化鎵對極性氮化鎵之光電化學特性影響 54 4.2.2 氮化鋁鎵對極性氮化鎵之光電化學特性影響 61 Reference 71 第五章 結論與未來展望 72 5.1 結論 72 5.2 未來展望 74

    [1] M. I. Hoffert, “Farewell to Fossil Fuels?,” Science, vol. 329, pp. 1292-1294, 2010.
    [2] S. Pacala and R. Socolow, “Stabilization wedges: solving the climate problem for the next 50 years with current technologies,” Science, vol. 305, pp. 968-972, 2004
    [3] Luque and A. Marti, “The intermediate band solar cell: progress toward the realization of an attractive concept,” Adv. Mater, vol. 22, pp.160-174, 2010.
    [4] A. Marti and A.Luque, “Intermediate band solar cells,” Advance in Science and Technology, vol. 74, pp. 143-150, 2011.
    [5] Kreuter W, Hofmann H, “Electrolysis:the important energy transformer in a world of sustainable energy,” Int J Hydrogen Energy, pp.661-666, 1998.
    [6] Allen J. Bard, Marye Anne Fox, “Artificial Photosynthesis:Solar Splitting of Water to Hydrogen and Oxygen,” Acc. Chem. Res. vol. 28, pp.141-145, 1995.
    [7] Katsushi Fujii, Takeshi Karasawa and Kazuhiro Ohkawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation”, Jpn. J. Appl. Phys., vol. 44, pp. L543-L545, 2005.
    [8] M. Tomkiewicz and H. Fay, “Photoelectrolysis of water with semiconductors”, Appl. Phys., vol.18, no.1, pp.1-28, 1979.
    [9] S. S. Kocha, M. W. Peterson, D. J. Arent, J. M. Redwing, M. A. Tischler, and J. A. Turner, “Electrochemical Investigation of the Gallium Nitride-Aqueous Electrolyte Interface”, J. Electrochem. Soc., vol.142, pp.L238-L240, 1995.
    [10] K. Fujii, T. Karasawa, and K. Oshawa, “Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation”, Jpn. J. Appl. Phys., vol.44, pp.L543-L545, 2005.
    [11] Simon Min Sze, “Semiconductor Devices: Physics and Technology”, John Wiley & Sons Inc, 2001
    [12] Akihiko Kudo, “Photocatalyst Materials for Water Splitting”, Catalysis Surveys from Asia, vol.7, no.1, pp.31-38, 2004.
    [13] 粘駿楠, “銅氧化物結構對其催化和光電化學反應性之影響”, 國立成功大學化學工程學研究所博士論文, 2006.
    [14] Allen J. Bard (Editor), Martin Stratmann (Editor), Stuart Licht (Editor), “Encyclopedia of Electrochemistry, Volume 6, Semiconductor Electrodes and Photoelectrochemistry”, John Wiley & Sons, Inc., 2002
    [15] Katsushi Fujii, Masato Ono, Takashi Ito, Yasuhiro Iwaki, Akira Hirako, and KazuhiroOhkawa, “Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1−xN and InyGa1−yN Alloys”, J. Electrochem. Soc., vol.154, Issue 2, pp. B175-B179 , 2007.
    [16] AJ. Nozik, “Physical Chemistry of Semiconductor-Liquid Interfaces,” J. Phys. Chem., vol. 100, pp. 13061-13078, 1996.
    [17] A.W. Bott, “Electrochemistry of Semiconductors”, Current Separations, vol.17, no.3, pp.87-91, 1998.
    [18] C. A. Grimes, O. K. Varghese, S. Ranian, “Light, Water, Hydrogen-The Solar Generation of Hydrogen by Water Photoelectrolysis,” Springer, 2008.
    [19] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., Vol. 85, No. 6, 1999.
    [20] A. E. Romanov, T. J. Baker, S. Nakamura, J. S. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys. 100, 2006.
    [21] I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys., Vol. 94, No. 6, 2003.
    [22] Koval CA, Howard JN, “Electron transfer at semiconductor electrode-liquid electrolyte interfaces,” Chem. Rev. vol. 92, pp.411-433, 1992.
    [23] Lewis NS, “Mechanistic studies of light-induced charge separation at semiconductor / liguid interfaces,” Acc. Chem. Res., vol. 23, pp.176-183, 1990.
    [24] 顏政雄, “奈米金粒子修飾氮化鎵電極之光電化學特性及其在直接光照水分解產氫之應用,” 國立海洋大學光電科學研究所碩士論文, 2009.
    [25] 鄭惇文, “毛細管電泳電化學偵測系統:以商業化元件光纖連接器改善毛細管與電極對準的問題”, 國立中山大學化學研究所碩士論文, 2001.
    [26] Allen J. Bard, Larry R. Faulkner, “Electrochemical Methods: Fundament-als and Applications, 2nd Edition”, John Wiley & Sons, Inc., 2001.
    [27] A.W. Bott, “Electrochemistry of Semiconductors”, Current Separations, vol.17, no.3, pp.87-91, 1998.
    [28] Michael Grätzel, “Photoelectrochemical cells”, Nature, vol.414, pp.338-344, 2001.
    [29] 周柏翰, “應用不同結構及電化學處理於n型氮化鎵光電解水產氫之研究”, 國立成功大學光電科學與工程學系碩士論文, 2012.
    [30] 陳育同, “氮化物工作電極應用於光電化學電解水產氫特性之研究,” 國立成功大學光電科學與工程學系碩士論文, 2013.
    [31] Ho Won Jang, Jung-Hee Lee, and Jong-Lam Lee, “Characterization of band bendings on Ga-face and N-face GaN films grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 80, No. 21, 27 May 2002.
    [32] 葉昭呈, “氮化鎵電極光電解水產氫之光電化學特性研究”, 國立成功大學光電科學與工程學系碩士論文, 2010.
    [33] Yan-Gu Lin, Yu-Kuei Hsu, Antonio M. Basilio, Yit-Tsong Chen, Kuei-Hsien Chen, and Li-Chyong Chen, “Photoelectrochemical activity on Ga-polar and N-polar GaN surfaces for energy conversion,” OPTICS EXPRESS, Vol. 22, No. S1, 2014.
    [34] Katsushi FUJII, Yasuhiro IWAKI, Hisashi MASUI, Troy J. BAKER, Michael IZA, Hitoshi SATO, John KAEDING, Takafumi YAO, James S. SPECK, Steven P. DENBAARS, Shuji NAKAMURA, and Kazuhiro OHKAWA, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Japanese Journal of Applied Physics, Vol. 46, No. 10A, 2007.

    下載圖示 校內:2017-08-04公開
    校外:2017-08-04公開
    QR CODE