| 研究生: |
黃楷文 Huang, Kai-Wen |
|---|---|
| 論文名稱: |
研究氧化鉿鋯鐵電電容在低溫環境下喚醒效應和耐久性 Exploring the Wake-Up Effect and Endurance Characteristics of Ferroelectric Capacitors at Low Temperatures: Insights from HZO Materials |
| 指導教授: |
高國興
Kao, Kuo Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 鐵電電容 、低溫操作 、可靠性 、wake-up 效應 、保持性 、耐久性 、2Pr 、2Vc |
| 外文關鍵詞: | ferroelectric capacitor, low-temperature operation, reliability, wake-up effect, retention, endurance, 2Pr, 2Vc |
| 相關次數: | 點閱:50 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] P. Lukas, ‘John von Neumann and Modern Computer Architecture’, NCLab. Accessed: Nov. 17, 2023. [Online]. Available: https://nclab.com/john-von-neumann-and-modern-computer-architecture/
[2] ‘Evaluation of Alternative Vertical Transistors for 3D NAND Applications - KU Leuven’. Accessed: Jun. 05, 2023. [Online]. Available: https://kuleuven.limo.libis.be/discovery/fulldisplay/lirias2790974/32KUL_KUL:Lirias
[3] K. Florent, ‘Ferroelectric HfO2 for Emerging Ferroelectric Semiconductor Devices’.
[4] ‘Integration of Ferroelectric and Piezoelectric Thin Films: Concepts and Applications for Microsystems | Wiley’, Wiley.com. Accessed: Jun. 05, 2023. [Online]. Available: https://www.wiley.com/en-us/Integration+of+Ferroelectric+and+Piezoelectric+Thin+Films%3A+Concepts+and+Applications+for+Microsystems-p-9781118616604
[5] Physics of Ferroelectrics: A Modern Perspective, vol. 105. in Topics in Applied Physics, vol. 105. Berlin, Heidelberg: Springer, 2007. doi: 10.1007/978-3-540-34591-6.
[6] E. Yurchuk, ‘Electrical Characterisation of Ferroelectric Field Effect Transistors Based on Ferroelectric Hfo2 Thin Films’, Jun. 2015. Accessed: Jun. 05, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Electrical-Characterisation-of-Ferroelectric-Field-Yurchuk/7765649392bf30a7fe65b43593448c9e0382cf7a
[7] ‘Multi-Physics Properties in Ferroelectric Nanowires and Related Structures from First-Principles | IntechOpen’. Accessed: Jun. 05, 2023. [Online]. Available: https://www.intechopen.com/chapters/10516
[8] ‘Domains in Ferroic Crystals and Thin Films | SpringerLink’. Accessed: Jun. 05, 2023. [Online]. Available: https://link.springer.com/book/10.1007/978-1-4419-1417-0
[9] ‘Ferroelectric Memories | SpringerLink’. Accessed: Jun. 05, 2023. [Online]. Available: https://link.springer.com/book/10.1007/978-3-662-04307-3
[10] ‘Understanding a Ferroelectric Hysteresis Loop in Electronics’. Accessed: Nov. 17, 2023. [Online]. Available: https://resources.pcb.cadence.com/blog/2020-understanding-a-ferroelectric-hysteresis-loop-in-electronics
[11] Y.-H. Chen, C.-J. Su, T.-H. Yang, C. hu, and T.-L. Wu, ‘Improved TDDB Reliability and Interface States in 5-nm Hf0.5Zr0.5O2 Ferroelectric Technologies Using NH₃ Plasma and Microwave Annealing’, IEEE Trans. Electron Devices, vol. PP, pp. 1–5, Mar. 2020, doi: 10.1109/TED.2020.2973652.
[12] ‘Recent progress for obtaining the ferroelectric phase in hafnium oxide based films: impact of oxygen and zirconium - IOPscience’. Accessed: Jul. 20, 2023. [Online]. Available: https://iopscience.iop.org/article/10.7567/1347-4065/ab45e3/meta
[13] V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, ‘Electronic properties of hafnium oxide: A contribution from defects and traps’, Phys. Rep., vol. 613, pp. 1–20, Feb. 2016, doi: 10.1016/j.physrep.2015.11.002.
[14] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, ‘Ferroelectricity in hafnium oxide thin films’, Appl. Phys. Lett., vol. 99, no. 10, Art. no. 10, Sep. 2011, doi: 10.1063/1.3634052.
[15] S. J. Kim, J. Mohan, S. Summerfelt, and J. Kim, ‘Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances’, JOM, vol. 71, Sep. 2018, doi: 10.1007/s11837-018-3140-5.
[16] A. M. Walke et al., ‘Electrical Investigation of Wake-Up in High Endurance Fatigue-Free La and Y Doped HZO Metal–Ferroelectric–Metal Capacitors’, IEEE Trans. Electron Devices, vol. 69, no. 8, pp. 4744–4749, Aug. 2022, doi: 10.1109/TED.2022.3186869.
[17] M. Tarkov, F. Tikhonenko, V. Popov, V. Antonov, A. Miakonkikh, and K. Rudenko, ‘Ferroelectric Devices for Content-Addressable Memory’, Nanomaterials, vol. 12, p. 4488, Dec. 2022, doi: 10.3390/nano12244488.
[18] D. Zhou et al., ‘Wake-up effects in Si-doped hafnium oxide ferroelectric thin films’, Appl. Phys. Lett., vol. 103, no. 19, p. 192904, Nov. 2013, doi: 10.1063/1.4829064.
[19] D. Martin et al., ‘Ferroelectricity in Si-Doped HfO2 Revealed: A Binary Lead-Free Ferroelectric’, Adv. Mater., vol. 26, no. 48, Art. no. 48, 2014, doi: 10.1002/adma.201403115.
[20] ‘Understanding ferroelectric Al:HfO2 thin films with Si-based electrodes for 3D applications | Journal of Applied Physics | AIP Publishing’. Accessed: Jun. 10, 2023. [Online]. Available: https://pubs.aip.org/aip/jap/article/121/20/204103/153683/Understanding-ferroelectric-Al-HfO2-thin-films
[21] Y. A. Genenko, J. Glaum, M. J. Hoffmann, and K. Albe, ‘Mechanisms of aging and fatigue in ferroelectrics’, Mater. Sci. Eng. B, vol. 192, pp. 52–82, Feb. 2015, doi: 10.1016/j.mseb.2014.10.003.
[22] M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, ‘Review and perspective on ferroelectric HfO2-based thin films for memory applications’, MRS Commun., vol. 8, no. 3, pp. 795–808, Sep. 2018, doi: 10.1557/mrc.2018.175.
[23] W. L. Warren et al., ‘Polarization suppression in Pb(Zr,Ti)O3 thin films’, J. Appl. Phys., vol. 77, no. 12, pp. 6695–6702, Jun. 1995, doi: 10.1063/1.359083.
[24] D. Dimos, W. L. Warren, and H. N. Al-Shareef, ‘Degradation Mechanisms and Reliability Issues for Ferroelectric Thin Films’, in Thin Film Ferroelectric Materials and Devices, R. Ramesh, Ed., in Electronic Materials: Science and Technology. , Boston, MA: Springer US, 1997, pp. 199–219. doi: 10.1007/978-1-4615-6185-9_8.
[25] ‘Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin film capacitors with Pt electrodes | Applied Physics Letters | AIP Publishing’. Accessed: Jun. 11, 2023. [Online]. Available: https://pubs.aip.org/aip/apl/article/72/21/2763/68667/Direct-observation-of-region-by-region-suppression
[26] ‘Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features | Journal of Applied Physics | AIP Publishing’. Accessed: Jun. 11, 2023. [Online]. Available: https://pubs.aip.org/aip/jap/article/90/3/1387/484400/Polarization-fatigue-in-ferroelectric-films-Basic
[27] C. Brennan, ‘Model of ferroelectric fatigue due to defect/domain interactions’, Ferroelectrics, vol. 150, no. 1, pp. 199–208, Dec. 1993, doi: 10.1080/00150199308008705.
[28] A. K. Tagantsev, I. Stolichnov, N. Setter, and J. S. Cross, ‘Nature of nonlinear imprint in ferroelectric films and long-term prediction of polarization loss in ferroelectric memories’, J. Appl. Phys., vol. 96, no. 11, pp. 6616–6623, Nov. 2004, doi: 10.1063/1.1805190.
[29] ‘Ferroelectric thin films: Review of materials, properties, and applications | Journal of Applied Physics | AIP Publishing’. Accessed: Jun. 12, 2023. [Online]. Available: https://pubs.aip.org/aip/jap/article/100/5/051606/974388/Ferroelectric-thin-films-Review-of-materials
[30] ‘Imprint in ferroelectric materials due to space charges: A theoretical analysis | Applied Physics Letters | AIP Publishing’. Accessed: Jun. 12, 2023. [Online]. Available: https://pubs.aip.org/aip/apl/article/95/9/092902/338465/Imprint-in-ferroelectric-materials-due-to-space
[31] ‘The interface screening model as origin of imprint in PbZrxTi1−xO3 thin films. I. Dopant, illumination, and bias dependence | Journal of Applied Physics | AIP Publishing’. Accessed: Jun. 12, 2023. [Online]. Available: https://pubs.aip.org/aip/jap/article/92/5/2680/472083/The-interface-screening-model-as-origin-of-imprint
[32] Y. Ahn and J. Y. Son, ‘Imprint phenomenon of ferroelectric switching characteristics in BaTiO3/PbTiO3 multilayer thin films’, J. Alloys Compd., vol. 891, p. 162088, Jan. 2022, doi: 10.1016/j.jallcom.2021.162088.
[33] I. Stolichnov, A. K. Tagantsev, E. Colla, N. Setter, and J. S. Cross, ‘Physical model of retention and temperature-dependent polarization reversal in ferroelectric films’, J. Appl. Phys., vol. 98, no. 8, p. 084106, Oct. 2005, doi: 10.1063/1.2112174.
[34] A. K. Tagantsev, M. Landivar, E. Colla, and N. Setter, ‘Identification of passive layer in ferroelectric thin films from their switching parameters’, J. Appl. Phys., vol. 78, no. 4, pp. 2623–2630, Aug. 1995, doi: 10.1063/1.360122.
[35] ‘Modeling of depolarization in ferroelectric thin films: Integrated Ferroelectrics: Vol 23, No 1-4’. Accessed: Jun. 12, 2023. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/10584589908210139
校內:2025-11-24公開