簡易檢索 / 詳目顯示

研究生: 曾世聰
Tseng, Shih-Tsung
論文名稱: 超塑性3Y-TZP基陶瓷及AZ31B-H24鎂合金之有限元素分析
Finite Element Analysis of Superplastic Codoped 3Y-TZP Ceramics and AZ31 Magnesium Alloy
指導教授: 胡宣德
Hu, Hsuan-Teh
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 85
中文關鍵詞: AZ313Y-TZP超塑性組成律有限元素
外文關鍵詞: AZ31, 3Y-TZP, superplastic constitutive law, finite element
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文欲以循序漸進的方法發展一個可吻合高溫 FSS 超塑性材料之關鍵行為:「於不同應變率拉伸條件下具不同應力-應變關係」的組成律模型及FEM分析模式。案例分析使用二類超塑性材料:1400oC之3Y-TZP基陶瓷及400oC的AZ31B-H24鎂合金。FEM分析時假設二類材料皆為均質、均向性,材料進入塑性後的應力增量-應變增量之關係以3-D彈-塑力學性理論,結合von Mises諧和流法則及均向性硬化準則來運算材料的塑性流演化行為。本文先對二類超塑性材料的單軸拉伸試驗進行FEM模擬,驗證本文對各自材料所提出的組成律模型之可靠性、及FEM分析模式對超塑性大變形力學分析的適用性。
    二類研究材料的組成律模型建構方法:3Y-TZP基陶瓷取其單軸固定速率拉伸實驗的應力-應變曲線上斜率變化明顯之點,以片段直線連接,得到一個簡化的組成律模型;另外,本文以曲線擬合方法分析AZ31B-H24鎂合金之不同固定真實應變率拉伸的單軸實驗應力-應變曲線,提出一個以應變、應變率為函數的應力流方程式之組成律模型。
    本文將二類研究材料之組成律模型導入上述的FEM彈塑性分析模式,模擬各自的單軸拉伸試驗,分析結果顯示二類材料的FEA與實驗結果之應力-應變曲線及試體最終的變形形狀,皆具有相當不錯的吻合效果,顯示本文所提出的FEM分析模式對超塑性材料大變形力學分析之適用性,且驗證了本文所提出的AZ31B-H24鎂合金組成律模型可結合現行二種超塑性材料模型(黏塑性及彈塑性材料模型)之優點,即組成律模型可以吻合AZ31B-H24鎂合金(高溫FSS超塑性材料)之關鍵行為:「於不同應變率拉伸條件下具不同應力-應變關係」。
    再者,本文藉此分析模式預測AZ31B-H24鎂合金單軸固定速率拉伸案例,分析結果可符合此案例為『應變率不斷減小的連續變形歷程』之物理行為;最後,本文對AZ31B-H24鎂合金的吹製成型試驗進行模擬,分析結果顯示,FEA與實驗記錄結果的吹脹高度、試體變形皆具有相當不錯的吻合性,驗證了本文所提出的AZ31B-H24鎂合金組成律模型及FEM分析模式對於超塑性成型力學之分析之實用性,可作為此類材料日後不論在應用數值分析或解析理論之研究,抑或供予超塑性成型工業針對製程改良、力學分析、破壞預測等,提供一個實用的參考。

    This research developed constitutive laws as well as an FE model for the purpose of simulating the strain-rate dependent stress-strain characteristics of superplastic FSS materials. The materials used for FE case studies were codoped 3Y-TZP ceramics at 1400°C as well as an AZ31B-H24 mg alloy at 400°C. Two kinds of analyzed materials were assumed to be homogeneous and isotropic for FE simulations, and the incremental stress-strain relationships were formulated using a 3-D elastic-plastic model, which simulated the elastic response using Hooke’s law and the work hardening response using the flow rule associated with the von-Mises yield criterion combined with the isotropic hardening rule. The FE simulations on the uniaxial tensile tests of two kinds of materials were performed for the purpose of verifying the reliability of proposed constitutive laws of each material.
    The methods used to develop the constitutive laws of two kinds of materials are described as follows: (1). The simplified constitutive laws of codoped 3Y-TZP ceramics were developed based on piecewise linear connections at the turning points of different deformation stages on the experimental stress-strain curves. (2). The constitutive law developed by curve fitting the tensile tests data of an AZ31B-H24 mg alloy was expressed as a flow stress function of strain and strain rate.
    Both kinds of constitutive laws were embedded into the above mentioned elastic-plastic FE model to simulate both tensile tests. The results show that the stress-strain characteristics and the final deformed shapes in the FEA agree well with the experiments for both kinds of materials. These results show that the proposed FE model is suitable to simulate the mechanical behavior of superplastic materials, and the presented constitutive law of AZ31B-H24 mg alloy is reliable to describe the strain-rate dependent stress-strain characteristics, which combines advantages of viscoplastic and elastic-plastic constitutive models for superplastic materials.
    In addition, the FE verification on a free bulge forming experiment of the AZ31B-H24 mg alloy show that the proposed FE model is practicable for mechanical analysis on superplastic forming problems. This research offers a selective numerical method for advanced analyses on superplastic materials.

    摘要(中文)……………………………………………………………… I 摘要(英文)……………………………………………………………… II 致謝……………………………………………………………………… III 目錄……………………………………………………………………… IV 表目錄…………………………………………………………………… VI 圖目錄…………………………………………………………………… VII 符號……………………………………………………………………… X 第一章 緒論……………………………………………………………… 1 §1.1 研究背景…………………………………………………………… 1 §1.2 研究動機、目的…………………………………………………… 2 §1.3 研究方法…………………………………………………………… 3 §1.4 研究結論…………………………………………………………… 4 §1.5 論文章節架構……………………………………………………… 5 第二章 文獻探討………………………………………………………… 6 §2.1 超塑性的歷史……………………………………………………… 6 §2.2 超塑性的分類……………………………………………………… 7 §2.3 超塑性成型FEM數值分析文獻回顧……………………………… 10 第三章 研究方法………………………………………………………… 14 §3.1 研究架構與方法…………………………………………………… 14 §3.2 彈塑性力學理論(材料模型)的應力增量-應變增量關係…………16 §3.3 ABAQUS應變率運算之演算法…………………………………… 20 §3.3.1 變形之定義……………………………………………………… 20 §3.3.2 應變之定義……………………………………………………… 23 §3.3.3 應變率之定義…………………………………………………… 24 §3.3.4 應變率運算之演算法…………………………………………… 25 第四章 案例分析………………………………………………………… 27 §4.1 3Y-TZP基超塑性陶瓷單軸拉伸試驗模擬…………………………27 §4.1.1 試驗概況…………………………………………………………27 §4.1.2 FEM模擬………………………………………………………… 28 §4.1.3 FEM模擬結果…………………………………………………… 30 §4.2 AZ31B-H24鎂合金單軸拉伸試驗模擬…………………………… 32 §4.2.1 試驗概況………………………………………………………… 32 §4.2.2 材料組成律……………………………………………………… 33 §4.2.3 AZ31B-H24組成律驗證分析之FEM模型……………………… 34 §4.2.4 AZ31B-H24組成律驗證分析之FEA結果……………………… 36 §4.3 AZ31B-H24固定速率拉伸之FEM預測分析……………………… 38 §4.4 AZ31B-H24吹製成型試驗之FEM模擬…………………………… 39 §4.4.1 AZ31B-H24吹製成型試驗概況………………………………… 39 §4.4.2 AZ31B-H24吹製成型FEM網格收斂性分析…………………… 40 §4.4.3 AZ31B-H24吹製成型FEM模擬結果…………………………… 41 第五章 結論與建議……………………………………………………… 43 §5.1 結論………………………………………………………………… 43 §5.2 對未來研究之建議………………………………………………… 44 參考文獻…………………………………………………………………… 45 附錄一、方程式(3-15)、(3-16)、(3-17)、(3-18)之推導過程…… 83

    [1] Abu-Farha, F. K. and Khraisheh, M. K., "Analysis of Superplastic Deformation of AZ31 Magnesium Alloy," Advanced Engineering Materials, Vol. 9, No. 9, pp. 777-783, (2007a).
    [2] Abu-Farha, F. K. and Khraisheh, M. K., "Mechanical Characteristics of Superplastic Deformation of AZ31 Magnesium Alloy," Journal of Materials Engineering and Performance, Vol. 16, No. 2, pp. 192-199, (2007b).
    [3] Abu-Farha, F. K., Rawashdeh, N. A., and Khraisheh, M. K., "Superplastic Deformation of Magnesium Alloy AZ31 under Biaxial Loading Condition," in Superplasticity in Advanced Materials - ICSAM 2006, Vol. 551-552, Materials Science Forum, Edited by K. F. Zhang, pp. 219-224, (2007).
    [4] Bakofen, W. A., Turner, I. R., and Avery, D. H., "Superplasticity in An Al-Zn Alloy," ASM TRANSACTIONS QUARTERLY, Vol. 57, pp. 980-990, (1964).
    [5] Banabic, D., Balan, T., and Comsa, D. S., "Closed-form Solution for Bulging through Elliptical Dies," Journal of Materials Processing Technology, Vol. 115, No. 1, pp. 83-86, (2001).
    [6] Barlat, Frédéric, "Constitutive Descriptions For Metal Forming Simulations," AIP Conference Proceedings, Vol. 908, No. 1, pp. 3-23, (2007).
    [7] Bengough, G. D., "A Study of The Properties of Alloys at High Temperatures," Journal of the Institute of Metals, Vol. 7, pp. 123-190, (1912).
    [8] Bieler, Thomas R., Mishra, Rajiv S., and Mukherjee, Amiya K., "Superplasticity in Hard-To-Machine Materials," Annual Review of Materials Science, Vol. 26, pp. 75-106, (1996).
    [9] Bonet, J., Bhargava, P., and Wood, R. D., "Finite Element Analysis of The Superplastic Forming of Thick Sheet Using The Incremental Flow Formulation," International Journal for Numerical Methods in Engineering, Vol. 40, No. 17, pp. 3205-3228, (1997).
    [10] Chandra, N., "Analysis of Superplastic Metal-Forming by a Finite-Element Method," International Journal for Numerical Methods in Engineering, Vol. 26, No. 9, pp. 1925-1944, (1988).
    [11] Chen, F. K., Huang, T. B., and Chen, S. G., "Embossment Formation in Press Forging of AZ31 Magnesium-alloy Sheets," International Journal of Advanced Manufacturing Technology, Vol. 32, No. 3-4, pp. 272-279, (2007).
    [12] Chen, Wai-Fah and Han, Da-Jian, "Plasticity for Structural Engineers," J. Ross Publishing, New York, First ed., pp. 232-289, (2007).
    [13] Choi, S. C., Kim, H. Y., Hong, S. M., Shin, Y. S., Lee, G. H., and Kim, H. J., "Evaluation and Prediction of The Forming Limit of AZ31B Magnesium Alloy Sheets in A Cross-shaped Cup Deep Drawing Process," Metals and Materials International, Vol. 15, No. 4, pp. 575-584, (2009).
    [14] Ding, X. D., Zbib, H. M., Hamilton, C. H., and Bayoumi, A. E., "On the Optimization of Superplastic Blow-Forming Processes," Journal of Materials Engineering and Performance, Vol. 4, No. 4, pp. 474-485, (1995).
    [15] Dutta, A. and Mukherjee, A. K., "Superplastic Forming: An Analytical Approach," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, Vol. 157, No. 1, pp. 9-13, (1992).
    [16] Edington, J. W., Melton, K. N., and Cutler, C. P., "SUPERPLASTICITY," Progress in Materials Science, Vol. 21, No. 2, pp. 63-170, (1976).
    [17] El-Morsy, A., Akkus, N., Manabe, K., and Nishimura, H., "Evaluation of Superplastic Material Characteristics Using Multi-dome Forming Test," in Superplasticity in Advanced Materials, Icsam-2000, Vol. 357-363, Materials Science Forum, Edited by N. Chandra, pp. 587-592, (2001).
    [18] Ghosh, A. K. and Hamilton, C. H., "Mechanical Behavior and Hardening Characteristics of a Superplastic Ti-6Al-4V Alloy," Metallurgical Transactions A: Physical Metallurgy and Materials Science, Vol. 10, No. 6, pp. 699-706, (1979).
    [19] Hsu, T. C. and Chu, C. H., "A Finite-Element Analysis of Sheet Metal Forming Processes," Journal of Materials Processing Technology, Vol. 54, No. 1-4, pp. 70-75, (1995).
    [20] Hsu, T. C. and Shien, I. R., "Finite Element Modeling of Sheet Forming Process with Bending Effects," Journal of Materials Processing Technology, Vol. 63, No. 1-3, pp. 733-737, (1997).
    [21] Huang, T. B., Tsai, Y. A., and Chen, F. K., "Finite Element Analysis and Formability of Non-isothermal Deep Drawing of AZ31B Sheets," Journal of Materials Processing Technology, Vol. 177, No. 1-3, pp. 142-145, (2006).
    [22] Huh, H., Han, S. S., Lee, J. S., and Hong, S. S., "Experimental-Verification of Superplastic Sheet-Metal Forming Analysis by the Finite-Element Method," Journal of Materials Processing Technology, Vol. 49, No. 3-4, pp. 355-369, (1995).
    [23] Hwang, J. K., Sohn, K. Y., Kang, D. M., and Shin, Y. S., "Finite Element Analysis of Press Forging Process of AZ31 Sheet," in Magnesium - Science, Technology and Applications, Vol. 488-489, Materials Science Forum, Edited by W. Ke, E. H. Han, Y. F. Han, K. Kainer, and A. A. Luo, pp. 457-460, (2005).
    [24] Kaiser, F., Letzig, D., Bohlen, J., Styczynski, A., Hartig, C., and Kainer, K. U., "Anisotropic Properties of Magnesium Sheet AZ31," Materials Science Forum, Vol. 419-422, pp. 315-320, (2003).
    [25] Kim, J., Ryou, H., Kim, D., Lee, W., Hong, S. H., and Chung, K., "Constitutive Law for AZ31B Mg Alloy Sheets and Finite Element Simulation for Three-point Bending," International Journal of Mechanical Sciences, Vol. 50, No. 10-11, pp. 1510-1518, (2008).
    [26] Kim, Y. H., Hong, S. S., Lee, J. S., and Wagoner, R. H., "Analysis of Superplastic Forming Processes Using a Finite-Element Method," Journal of Materials Processing Technology, Vol. 62, No. 1-3, pp. 90-99, (1996).
    [27] Langdon, T. G., "Seventy-Five Years of Superplasticity: Historic Developments and New Opportunities," Journal of Materials Science, Vol. 44, No. 22, pp. 5998-6010, (2009).
    [28] Li, Da-Yong, Chang, Qun-Feng, Peng, Ying-Hong, and Zeng, Xiao-Qin, "Thermo-Mechanical Coupled Simulation of Warm Stamping of AZ31 Magnesium Alloy Sheet," in Progress in Light Metals, Aerospace Materials and Superconductors, Vol. 546 - 549, Materials Science Forum, Edited by F. Pan, K. U. Kainer, Y. Han, and W. Ke, pp. 281-284, (2007).
    [29] Liang, S. J., Liu, Z. Y., and Wang, E. D., "Simulation of Extrusion Process of AZ31 Magnesium Alloy," Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol. 499, No. 1-2, pp. 221-224, (2009).
    [30] Liew, K. M., Tan, H., and Tan, M. J., "Finite Element Modeling of Superplastic Sheet Metal Forming for Cavity Sensitive Materials," Journal of Engineering Materials and Technology. Transactions of the ASME, Vol. 125, No. 3, pp. 256-259, (2003).
    [31] Lin, J., "Selection of Material Models for Predicting Necking in Superplastic Forming," International Journal of Plasticity, Vol. 19, No. 4, pp. 469-481, (2003).
    [32] Nazzal, M. A., Abu-Farha, F. K., and Curtis, R. V., "Finite Element Simulations for Investigating the Effects of Specimen Geometry in Superplastic Tensile Tests," Journal of Materials Engineering and Performance, Vol. 20, No. 6, pp. 865-876, (2011).
    [33] Nazzal, M. A. and Khraisheh, M. K., "Impact of Selective Grain Refinement on Superplastic Deformation: Finite Element Analysis," Journal of Materials Engineering and Performance, Vol. 17, No. 2, pp. 163-167, (2008).
    [34] Nazzal, M. A., Khraisheh, M. K., and Darras, B. M., "Finite Element Modeling and Optimization of Superplastic Forming Using Variable Strain Rate Approach," Journal of Materials Engineering and Performance, Vol. 13, No. 6, pp. 691-699, (2004).
    [35] Nguyen, Duc-Toan, Kim, Young-Suk, and Jung, Dong-Won, "Coupled Thermomechanical Finite Element Analysis to Improve Press Formability for Camera Shape Using AZ31B Magnesium Alloy Sheet," Metals and Materials International, Vol. 18, No. 4, pp. 583-595, (2012).
    [36] Nieh, T. G., Wadsworth, J., and Sherby, O. D., "Superplasticity in Metals and Ceramics," Cambridge University Press, New York, USA, First ed., (1997).
    [37] Palaniswamy, H., Ngaile, G., and Altan, T., "Finite Element Simulation of Magnesium Alloy Sheet Forming at Elevated Temperatures," Journal of Materials Processing Technology, Vol. 146, No. 1, pp. 52-60, (2004).
    [38] Pearson, C. E., "The Viscous Properties of Extruded Eutectic Alloys of Lead-Tin and Bismuth-Tin," Journal of the Institute of Metals, Vol. 54, pp. 111-124, (1934).
    [39] Peng, Ying-Hong, Chang, Qun-Feng, Li, Da-Yong, Jie, Hu, and Zeng, Xiao-Qin, "Numerical Simulation of Warm Deep Drawing of AZ31 Magnesium Alloy Sheet with Variable Blank Holder Force," Key Engineering Materials, Vol. 340 - 341, pp. 639-644, (2007).
    [40] Sasaki, K., Nakano, M., Mimurada, J., Ikuhara, Y., and Sakuma, T., "Strain Hardening in Superplastic Codoped Yttria-Stabilized Tetragonal-Zirconia Polycrystals," Journal of the American Ceramic Society, Vol. 84, No. 12, pp. 2981-2986, (2001).
    [41] Tao, J. and Keavey, M. A., "Finite Element Simulation for Superplastic Forming Using a Non-Newtonian Viscous Thick Section Element," Journal of Materials Processing Technology, Vol. 147, No. 1, pp. 111-120, (2004).
    [42] Thomsen, T. H., Holt, D. L., and Backofen, W. A., "Forming Superplastic Sheet Metal in Bulging Dies," Metals Engineering Quarterly, Vol. 10, No. 2, pp. 1-7, (1970).
    [43] Underwood, Ervin E., "A Review of Superplasticity and Related Phenomenon," Journal of Metals, Vol. 14, No. 12, pp. 914-919, (1962).
    [44] Verma, Ravi, Hector, Louis G., Krajewski, Paul E., and Taleff, Eric M., "The Finite Element Simulation of High-temperature Magnesium AZ31 Sheet Forming," JOM, Vol. 61, No. 8, pp. 29-37, (2009).
    [45] Yang, H., Huang, L., and Zhan, M., "Coupled Thermo-mechanical FE Simulation of The Hot Splitting Spinning Process of Magnesium Alloy AZ31," Computational Materials Science, Vol. 47, No. 3, pp. 857-866, (2010).
    [46] Yenihayat, O. F., Mimaroglu, A., and Unal, H., "Modelling and Tracing the Super Plastic Deformation Process of 7075aluminium Alloy Sheet: Use of Finite Element Technique," Materials & Design, Vol. 26, No. 1, pp. 73-78, (2005).
    [47] Zeng, Shao-Feng and Chen, Wen-Zhe, "Die Parameters Optimized for Drawing of AZ31 Magnesium Alloy Sheet by Finite Element Method," Key Engineering Materials, Vol. 480 - 481, pp. 634-638, (2011).

    無法下載圖示 校內:2023-07-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE