| 研究生: |
邱泓瑜 Ciou, Hong-Yu |
|---|---|
| 論文名稱: |
硫醇─烯點擊化學反應製備基於聚離子液體之彈性體 Preparation of Poly(ionic liquid)-Based Elastomers by Thiol-ene Click Chemistry |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 聚離子液體 、硫醇-烯點擊化學 、彈性體 、光聚合 |
| 外文關鍵詞: | poly(ionic liquid)s, thiol-ene click chemistry, elastomer, photopolymerization |
| 相關次數: | 點閱:83 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計以陽離子乙烯基咪唑作為反應官能基團、聚乙二醇為主體的離子液體,
並將其分別和 3 種結構相似的硫醇單體均勻混和後,在 UV 光的照射下進行硫醇-烯點
擊化學反應形成交聯彈性體。FT-IR 光譜和紫外光迴旋式流變分析儀分別證實硫醇-烯
反應不會殘餘任何可反應官能基團,且可以在短時間內完成固化反應。外觀和紫外光可見光光譜儀的分析均顯示彈性體具備很高的可見光穿透性。動態機械分析(DMA)和
溶膠-凝膠含量實驗則用於辨別材料交聯密度的差異,選擇不同的乙烯/硫醇官能基莫爾
比、不同分子量或不同反應硫醇官能基數目的硫醇單體皆會影響交聯密度,進一步改
變彈性體的機械強度。在單軸拉伸試驗中,可以觀察到此系統製備材料的最大拉伸強
度和最大斷裂伸長率分別為 0.45 MPa 和 451%,此外還可以藉由退火工藝(annealing)使材料的機械強度最高提升到 0.77 MPa,此現象可以歸因於高分子鏈在退火過程的重排
增強了電荷、離子-偶極等交互作用力。從循環拉伸試驗中也可以觀察到這類物理作用
力的增強對於高分子材料遲滯現象造成的影響,不過整體而言此研究的彈性體都展現
了優異的彈性回復特性。熱重分析也指出該系列材料具備一定的熱穩定性。考慮到透
明性、可調的機械性能和易於製造的特性,此系統可能在光學塗料、3D 列印等領域具
有潛在的應用。
In this research, A new type of PEG-containing dicationic imidazolium-based ionic
liquids (VIm-PEG400-VIm) were synthesized by facile quaternization reaction between brominated PEG and 1-vinylimidazole. Subsequently, a series of elastomers with 3D network structure were efficiently fabricated via thiol-ene click chemistry between VImPEG400-VIm and thiol-containing monomer under UV light. The fully accomplishment of thiol-ene reaction were confirmed by FT-IR analysis. UV-Vis curves showed the transparency of most elastomers was up to 80%. DMA analysis and sol-gel content experiment were done for distinguishing the degree of crosslinking density. The thiol monomer with different numbers of reactive thiol group and structure would lead to the differences in crosslinking density, which further have impact on their mechanical strengths. The tensile tests revealed that the maximum tensile strength and elongation at break were 0.77 Mpa and 451% respectively. Interestingly, the VIm-PEG400-VIm-based elastomers exhibit better stretchability and toughness than other PEG diacrylate-based elastomers, which was possibly attributed to the presence of ionic and ionic-dipole interactions. TGA analysis indicated that these elastomers exhibited favorable thermal stability. Apart from the potential applications in 3D printing or optical fields, this study also provided a new design concept of elastomers.
[1] A. O'Halloran, F. O'Malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges, J. Appl. Phys., 104 (2008) 10.
[2] S. Tang, J. Li, R.G. Wang, J.C. Zhang, Y.L. Lu, G.H. Hu, Z. Wang, L.Q. Zhang, Current trends in bio-based elastomer materials, SusMat, 2 (2022) 2-33.
[3] M.C. Serrano, E.J. Chung, G.A. Ameer, Advances and Applications of Biodegradable Elastomers in Regenerative Medicine, Adv. Funct. Mater., 20 (2010) 192-208.
[4] D.A. Kissounko, P. Taynton, C. Kaffer, New material: vitrimers promise to impact composites, Reinforced Plastics, 62 (2018) 162-166.
[5] P. Wasserscheid, T. Welton, Ionic liquids in synthesis, Wiley Online Library2008.
[6] B.Y. Liu, N.X. Jin, The Applications of Ionic Liquid as Functional Material: A Review, Curr. Org. Chem., 20 (2016) 2109-2116.
[7] M.P. Scott, C.S. Brazel, M.G. Benton, J.W. Mays, J.D. Holbrey, R.D. Rogers, Application of ionic liquids as plasticizers for poly(methyl methacrylate), Chem. Commun., (2002) 1370-1371.
[8] B.G. Yang, G.J. Yang, Y.M. Zhang, S.X.A. Zhang, Recent advances in poly(ionic liquid)s for electrochromic devices, J. Mater. Chem. C, 9 (2021) 4730-4741.
[9] T. Posner, Information on unsaturated compounds II The addition of mercaptan to unsaturated hydrocarbon, Berichte Der Deutschen Chemischen Gesellschaft, 38 (1905) 646-657.
[10] K. Piecco, A.M. Aboelenen, J.R. Pyle, J.R. Vicente, D. Gautam, J.X. Chen, Kinetic Model under Light-Limited Condition for Photoinitiated Thiol-Ene Coupling Reactions, ACS Omega, 3 (2018) 14327-14332.
[11] C.E. Hoyle, C.N. Bowman, Thiol-Ene Click Chemistry, Angew. Chem.-Int. Edit., 49 (2010) 1540-1573.
[12] N.B. Cramer, S.K. Reddy, A.K. O'Brien, C.N. Bowman, Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries, Macromolecules, 36 (2003) 7964-7969.
[13] B.H. Northrop, R.N. Coffey, Thiol-Ene Click Chemistry: Computational and Kinetic Analysis of the Influence of Alkene Functionality, J. Am. Chem. Soc., 134 (2012) 13804-13817.
[14] G.B. Kauffman, R.B. Seymour., Elastomers: I. Natural rubber, Journal of chemical education, 67 (1990) 422.
[15] N.R. Legge, Thermoplastic elastomers—Three decades of progress., Rubber chemistry and technology, 62 (1989) 529-547.
[16] A.R. Ballesteros, V.H.P. Ramos, F.L. Saucedo, G.G. Flores-Rojas, E. Bucio, γ‐Rays and Ions Irradiation, Surface Modification of Polymers: Methods and Applications, (2019) 185-209.
[17] A.N. Gent, RUBBER AND RUBBER ELASTICITY - REVIEW, Journal of Polymer Science Part C-Polymer Symposium, (1974) 1-17.
[18] S. Prager, H.L. Frisch, STATISTICAL MECHANICS OF A SIMPLE ENTANGLEMENT, J. Chem. Phys., 46 (1967) 1475-&.
[19] A.A. Yehia, Recycling of rubber waste, Polym.-Plast. Technol. Eng., 43 (2004) 1735-1754.
[20] M.M. Kenzo Fukumori, <material recycling technology of crosslinked rubber waste.pdf>, R&D Review of Toyota CRDL, 38 (2003) 39-47.
[21] A.M. Wemyss, C. Bowen, C. Plesse, C. Vancaeyzeele, G.T.M. Nguyen, F. Vidal, C.Y. Wan, Dynamic crosslinked rubbers for a green future: A material perspective, Mater. Sci. Eng. R-Rep., 141 (2020) 24.
[22] K. Roy, S.C. Debnath, A. Pongwisuthiruchte, P. Potiyaraj, Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives, J. Appl. Polym. Sci., 138 (2021) 17.
[23] L. Lyu, J.Z. Pei, D.L. Hu, G.Q. Sun, E.H. Fini, Bio-modified rubberized asphalt binder: A clean, sustainable approach to recycle rubber into construction, J. Clean Prod., 345 (2022) 14.
[24] P. Pantamanatsopa, W. Ariyawiriyanan, T. Meekeaw, R. Suthamyong, K. Arrub, H. Hamada, Effect of Modified Jute Fiber on Mechanical Properties of Green Rubber Composite, Energy Procedia, 56 (2014) 641-647.
[25] F. Abreu, M.M.C. Forte, S.A. Liberman, SBS and SEBS block copolymers as impact modifiers for polypropylene compounds, J. Appl. Polym. Sci., 95 (2005) 254-263.
[26] M. Denac, V. Musil, I. Šmit, Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 2. Mechanical properties, Composites Part A: Applied Science and Manufacturing, 36 (2005) 1282-1290.
[27] N. Fanegas, M.A. Gomez, I. Jimenez, C. Marco, J.M. Garcia-Martinez, G. Ellis, Optimizing the balance between impact strength and stiffness in polypropylene/elastomer blends by incorporation of a nucleating agent, Polym. Eng. Sci., 48 (2008) 80-87.
[28] P. Costa, S. Goncalves, H. Mora, S.A.C. Carabineiro, J.C. Viana, S. Lanceros-Mendez, Highly Sensitive Piezoresistive Graphene-Based Stretchable Composites for Sensing Applications, ACS Appl. Mater. Interfaces, 11 (2019) 46286-46295.
[29] L. Pinchuk, I. Riss, J.F. Batlle, Y.P. Kato, J.B. Martin, E. Arrieta, P. Palmberg, R.K. Parrish, B.A. Weber, Y. Kwon, J.M. Parel, The development of a micro-shunt made from poly(styrene-block-isobutylene-block-styrene) to treat glaucoma, J. Biomed. Mater. Res. Part B, 105 (2017) 211-221.
[30] S.S. Yuan, Z.B. Li, L.J. Song, H.C. Shi, S.F. Luan, J.H. Yin, Liquid-Infused Poly(styrene-b-isobutylene-b-styrene) Microfiber Coating Prevents Bacterial Attachment and Thrombosis, ACS Appl. Mater. Interfaces, 8 (2016) 21214-21220.
[31] M.A. Ahmed, M. El-Shafie, U.F. Kandil, M.M.R. Taha, Improving the Mechanical Properties of Thermoplastic Polyolefins Using Recycled Low-Density Polyethylene and Multi-Walled Carbon Nanotubes, Egypt. J. Chem., 64 (2021) 2517-2523.
[32] G. Zanchin, G. Leone, Polyolefin thermoplastic elastomers from polymerization catalysis: Advantages, pitfalls and future challenges, Prog. Polym. Sci., 113 (2021) 27.
[33] M. Kontopoulou, W. Wang, T.G. Gopakumar, C. Cheung, Effect of composition and comonomer type on the rheology, morphology and properties of ethylene-alpha-olefin copolymer/polypropylene blends, Polymer, 44 (2003) 7495-7504.
[34] M. Hemmati, A. Narimani, H. Shariatpanahi, A. Fereidoon, M.G. Ahangari, Study on Morphology, Rheology and Mechanical Properties of Thermoplastic Elastomer Polyolefin (TPO)/Carbon Nanotube Nanocomposites with Reference to the Effect of Polypropylene-grafted-Maleic Anhydride (PP-g-MA) as a Compatibilizer, Int. J. Polym. Mater., 60 (2011) 384-397.
[35] S. Amin, M. Amin, THERMOPLASTIC ELASTOMERIC (TPE) MATERIALS AND THEIR USE IN OUTDOOR ELECTRICAL INSULATION, Rev. Adv. Mater. Sci., 29 (2011) 15-30.
[36] A.S. Mohite, Y.D. Rajpurkar, A.P. More, Bridging the gap between rubbers and plastics: a review on thermoplastic polyolefin elastomers, Polym. Bull., 79 (2022) 1309-1343.
[37] N.Y. Ning, Y.Q. Hua, H.G. Wu, L.Q. Zhang, S.M. Wu, M. Tian, H.C. Tian, G.H. Hu, Novel heat and oil-resistant thermoplastic vulcanizates based on ethylene-vinyl acetate rubber/poly(vinylidene fluoride), RSC Adv., 6 (2016) 91594-91602.
[38] N.Y. Ning, X.Y. Li, H.C. Tian, Y.Q. Hua, H.L. Zuo, P.J. Yao, L.Q. Zhang, Y.P. Wu, G.H. Hu, M. Tian, Unique microstructure of an oil resistant nitrile butadiene rubber/polypropylene dynamically vulcanized thermoplastic elastomer, RSC Adv., 7 (2017) 5451-5458.
[39] R.R. Babu, N.K. Singha, K. Naskar, Effects of mixing sequence on peroxide cured polypropylene (PP)/ethylene octene copolymer (EOC) thermoplastic vulcanizates (TPVs). Part. I. Morphological, mechanical and thermal properties, J. Polym. Res., 17 (2010) 657-671.
[40] T. Chatterjee, D. Basu, A. Das, S. Wiessner, K. Naskar, G. Heinrich, Super thermoplastic vulcanizates based on carboxylated acrylonitrile butadiene rubber (XNBR) and polyamide (PA12), Eur. Polym. J., 78 (2016) 235-252.
[41] N.Y. Ning, S.Q. Li, H.G. Wu, H.C. Tian, P.J. Yao, G.H. Hu, M. Tian, L.Q. Zhang, Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review, Prog. Polym. Sci., 79 (2018) 61-97.
[42] L. Bartolome, J. Aurrekoetxea, M.A. Urchegui, W. Tato, The influences of deformation state and experimental conditions on inelastic behaviour of an extruded thermoplastic polyurethane elastomer, Mater. Des., 49 (2013) 974-980.
[43] C.P. Buckley, C. Prisacariu, C. Martin, Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure, Polymer, 51 (2010) 3213-3224.
[44] B. Mailhot, K. Komvopoulos, B. Ward, Y. Tian, G.A. Somorjai, Mechanical and friction properties of thermoplastic polyurethanes determined by scanning force microscopy, J. Appl. Phys., 89 (2001) 5712-5719.
[45] L.W. McKeen, Elastomers and Rubbers, The Effect of UV Light and Weather on Plastics and Elastomers2019, pp. 279-359.
[46] H. Chemica, A Guide to Thermoplastic Polyurethanes (TPU), Huntsman Chemica, (2010).
[47] J.X. Chen, Q.L. Lv, D.F. Wu, X. Yao, J. Wang, Z.S. Li, Nucleation of a Thermoplastic Polyester Elastomer Controlled by Silica Nanoparticles, Ind. Eng. Chem. Res., 55 (2016) 5279-5286.
[48] Y.X. Qiu, J. Wang, D.F. Wu, Z.F. Wang, M. Zhang, Y. Yao, N.X. Wei, Thermoplastic polyester elastomer nanocomposites filled with graphene: Mechanical and viscoelastic properties, Composites Science and Technology, 132 (2016) 108-115.
[49] O. Aso, J.I. Eguiazabal, J. Nazabal, The influence of surface modification on the structure and properties of a nanosilica filled thermoplastic elastomer, Composites Science and Technology, 67 (2007) 2854-2863.
[50] J. Mayumi, A. Nakagawa, K. Matsuhisa, H. Takahashi, H. Takahashi, M. Iijima, Material design and manufacture of a new thermoplastic polyester elastomer, Polym. J., 40 (2008) 1-9.
[51] Y.H. Zhong, M.L. Li, L.C. Zhang, X.W. Zhang, S.W. Zhu, W. Wu, Adding the combination of CNTs and MoS2 into halogen-free flame retarding TPEE with enhanced the anti-dripping behavior and char forming properties, Thermochim. Acta, 613 (2015) 87-93.
[52] R. Jiang, Y.C. Chen, S. Yao, T. Liu, Z.M. Xu, C.B. Park, L. Zhao, Preparation and characterization of high melt strength thermoplastic polyester elastomer with different topological structure using a two-step functional group reaction, Polymer, 179 (2019) 13.
[53] N. Najafi, M.C. Heuzey, P.J. Carreau, D. Therriault, C.B. Park, Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams, Eur. Polym. J., 73 (2015) 455-465.
[54] D.J. Buckwalter, J.M. Dennis, T.E. Long, Amide-containing segmented copolymers, Prog. Polym. Sci., 45 (2015) 1-22.
[55] J. Jiang, Q.Y. Tang, X. Pan, J.J. Li, L. Zhao, Z.H. Xi, W.K. Yuan, Facile Synthesis of Thermoplastic Polyamide Elastomers Based on Amorphous Polyetheramine with Damping Performance, Polymers, 13 (2021) 19.
[56] W.B. Kong, Y.Y. Yang, Z.M. Liu, J. Liang, C.L. Zhou, J.X. Lei, Structure-property relations of nylon-6 and polytetramethylene glycol based multiblock copolymers with microphase separation prepared through reactive processing, Polym. Int., 66 (2017) 436-442.
[57] X. Tong, W.M. Peng, M.L. Zhang, X.J. Wang, G. Zhang, S.R. Long, J. Yang, A new class of poly(ether-block-amide)s based on semi-aromatic polyamide: synthesis, characterization and structure-property relations, Polym. Int., 70 (2021) 230-241.
[58] S. Gong, S.K. Zhao, X.Y. Chen, H.P. Liu, J.P. Deng, S.Y. Li, X.X. Feng, Y.C. Li, X. Wu, K. Pan, Thermoplastic Polyamide Elastomers: Synthesis, Structures/Properties, and Applications, Macromol. Mater. Eng., 306 (2021) 23.
[59] Y.F. Ma, H. Wen, C.L. Xin, Y.D. He, Chain extension of thermoplastic polyamide elastomer and its foaming performance, J. Appl. Polym. Sci., 139 (2022) 11.
[60] R.C. Yuan, S. Fan, D.Q. Wu, X.L. Wang, J.Y. Yu, L.J. Chen, F.X. Li, Facile synthesis of polyamide 6 (PA6)-based thermoplastic elastomers with a well-defined microphase separation structure by melt polymerization, Polym. Chem., 9 (2018) 1327-1336.
[61] A. Sowinska, M. Maciejewska, Applications of ionic liquids in elastomeric composites: a review, Recent Advances in Ionic Liquids, (2018) 123-143.
[62] S. Thomas, R. Stephen, Rubber nanocomposites: preparation, properties, and applications, John Wiley & Sons2010.
[63] T. Fukushima, T. Aida, Ionic liquids for soft functional materials with carbon nanotubes, Chem.-Eur. J., 13 (2007) 5048-5058.
[64] T. Fukushima, A. Kosaka, Y. Yamamoto, T. Aimiya, S. Notazawa, T. Takigawa, T. Inabe, T. Aida, Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids, Small, 2 (2006) 554-560.
[65] M. Maciejewska, A. Krzywania-Kaliszewska, M. Zaborski, Kompozyty elastomerowe zawierajace ciecze jonowe, Polimery, 60 (2015) 501-507.
[66] Y.D. Lei, Z.H. Tang, B.C. Guo, L.X. Zhu, D.M. Jia, Synthesis of novel functional liquid and its application as a modifier in SBR/silica composites, Express Polym. Lett., 4 (2010) 692-703.
[67] C. Forestier, S. Grugeon, C. Davoisne, A. Lecocq, G. Marlair, M. Armand, L. Sannier, S. Laruelle, Graphite electrode thermal behavior and solid electrolyte interphase investigations: Role of state-of-the-art binders, carbonate additives and lithium bis(fluorosulfonyl)imide salt, J. Power Sources, 330 (2016) 186-194.
[68] S. Matchawet, A. Kaesaman, N. Vennemann, C. Kumerlowe, C. Nakason, Effects of imidazolium ionic liquid on cure characteristics, electrical conductivity and other related properties of epoxidized natural rubber vulcanizates, Eur. Polym. J., 87 (2017) 344-359.
[69] X.P. Hou, K.S. Siow, Novel interpenetrating polymer network electrolytes, Polymer, 42 (2001) 4181-4188.
[70] P.K. Behera, K.M. Usha, P.K. Guchhait, D. Jehnichen, A. Das, B. Voit, N.K. Singha, A novel ionomeric polyurethane elastomer based on ionic liquid as crosslinker, RSC Adv., 6 (2016) 99404-99413.
[71] J.Y. Yuan, D. Mecerreyes, M. Antonietti, Poly(ionic liquid)s: An update, Prog. Polym. Sci., 38 (2013) 1009-1036.
[72] F. Jiang, C. Fang, J. Zhang, W.T. Wang, Z.G. Wang, Triblock Copolymer Elastomers with Enhanced Mechanical Properties Synthesized by RAFT Polymerization and Subsequent Quaternization through Incorporation of a Comonomer with Imidazole Groups of about 2.0 Mass Percentage, Macromolecules, 50 (2017) 6218-6226.
[73] A. Das, A. Sallat, F. Bohme, M. Suckow, D. Basu, S. Wiessner, K.W. Stockelhuber, B. Voit, G. Heinrich, Ionic Modification Turns Commercial Rubber into a Self-Healing Material, ACS Appl. Mater. Interfaces, 7 (2015) 20623-20630.
[74] D. Huang, Y.L. Ding, H. Jiang, S.T. Sun, Z. Ma, K.Y. Zhang, L. Pan, Y.S. Li, Functionalized Elastomeric Ionomers Used as Effective Toughening Agents for Poly(lactic acid): Enhancement in Interfacial Adhesion and Mechanical Performance, ACS Sustain. Chem. Eng., 8 (2020) 573-585.
[75] A.R. Torrado Perez, D.A. Roberson, R.B. Wicker, Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials, Journal of Failure Analysis and Prevention, 14 (2014) 343-353.
[76] H.B. Zhou, Y. Chen, C.M. Plummer, H.H. Huang, Y.M. Chen, Facile and efficient bromination of hydroxyl-containing polymers to synthesize well-defined brominated polymers, Polym. Chem., 8 (2017) 2189-2196.
[77] B.S. Chiou, S.A. Khan, Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers, Macromolecules, 30 (1997) 7322-7328.
[78] R. Ramasamy, VIBRATIONAL SPECTROSCOPIC STUDIES OF IMIDAZOLE, Armenian Journal of Physics, 8 (2015).
[79] Z.Q. Kang, L.Y. Yu, Y. Nie, A.L. Skov, Crosslinking Methodology for Imidazole-Grafted Silicone Elastomers Allowing for Dielectric Elastomers Operated at Low Electrical Fields with High Strains, ACS Appl. Mater. Interfaces, 14 (2022) 51384-51393.
[80] S.Y. Zheng, X.L. Li, Y.B. Zhang, Q. Xie, Y.S. Wong, W.J. Zheng, T.F. Chen, PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction, Int. J. Nanomed., 7 (2012) 3939-3949.
[81] N.B. Cramer, S.K. Reddy, M. Cole, C. Hoyle, C.N. Bowman, Initiation and kinetics of thiol-ene photopolymerizations without photoinitiators, J. Polym. Sci. Pol. Chem., 42 (2004) 5817-5826.
[82] C.T. Hiranobe, G.D. Ribeiro, G.B. Torres, E.A.P. dos Reis, F.C. Cabrera, A.E. Job, L.L. Paim, R.J. dos Santos, Cross-Linked Density Determination of Natural Rubber Compounds by Different Analytical Techniques, Mater. Res.-Ibero-am. J. Mater., 24 (2021) 9.
[83] Z.H. Wang, Y.F. Ma, Y.X. Wang, Y.T. Liu, K. Chen, Z.H. Wu, S. Yu, Y. Yuan, C.S. Liu, Urethane-based low-temperature curing, highly-customized and multifunctional poly(glycerol sebacate)-co-poly(ethylene glycol) copolymers, Acta Biomater., 71 (2018) 279-292.
[84] Y.J. Hou, H. Xu, Y. Peng, H. Xiong, M.J. Cai, Y. Wen, Q. Wu, J.R. Wu, Recyclable and self-healable elastomers with high mechanical performance enabled by hydrogen-bonded rigid structure, Polymer, 264 (2023) 6.
[85] D.R. Merkel, N.A. Traugutt, R. Visvanathan, C.M. Yakacki, C.P. Frick, Thermomechanical properties of monodomain nematic main-chain liquid crystal elastomers, Soft Matter, 14 (2018) 6024-6036.
[86] T.S. Hebner, H.E. Fowler, K.M. Herbert, N.P. Skillin, C.N. Bowman, T.J. White, Polymer network structure, properties, and formation of liquid crystalline elastomers prepared via thiol–acrylate chain transfer reactions, Macromolecules, 54 (2021) 11074-11082.
[87] Y.J. Hou, Y. Peng, P. Li, Q. Wu, J.Q. Zhang, W.H. Li, G.W. Zhou, J.R. Wu, Bioinspired Design of High Vibration-Damping Supramolecular Elastomers Based on Multiple Energy-Dissipation Mechanisms, ACS Appl. Mater. Interfaces, 14 (2022) 35097-35104.
[88] T. Nakajima, Generalization of the sacrificial bond principle for gel and elastomer toughening, Polym. J., 49 (2017) 477-485.
[89] W.L. Qiu, G.Q. Chen, H. Zhu, Q. Zhang, S.P. Zhu, Enhanced stretchability and robustness towards flexible ionotronics via double-network structure and ion-dipole interactions, Chem. Eng. J., 434 (2022) 7.
[90] M.X. Li, L.L. Chen, Y.R. Li, X.B. Dai, Z.K. Jin, Y.C. Zhang, W.W. Feng, L.T. Yan, Y. Cao, C. Wang, Superstretchable, yet stiff, fatigue-resistant ligament-like elastomers, Nat. Commun., 13 (2022) 8.
[91] Y. Liang, X. Sun, Q. Lv, Y. Shen, H. Liang, Fully physically cross-linked hydrogel as highly stretchable, tough, self-healing and sensitive strain sensors, Polymer, 210 (2020) 123039.
[92] W.H. Awad, J.W. Gilman, M. Nyden, R.H. Harris Jr, T.E. Sutto, J. Callahan, P.C. Trulove, H.C. DeLong, D.M. Fox, Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites, Thermochim. Acta, 409 (2004) 3-11.
校內:2028-07-26公開