簡易檢索 / 詳目顯示

研究生: 張祐豪
Chang, You-Hao
論文名稱: 溶液燃燒法製備CaFe2O4粉末光觸媒應用於光轉換二氧化碳之研究
Solution combustion synthesis of CaFe2O4 powder photocatalysts for CO2 photoconversion
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 95
中文關鍵詞: 二氧化碳光還原溶液燃燒法鈣鐵氧化物(CaFe2O4)鎂鐵氧化物(Mg2Fe2O4)連續式系統光觸媒
外文關鍵詞: Calcium Ferrite, Magnesium Ferrite, Solution combustion, CO2 photoreduction, continuous system
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶液燃燒法製備鈣鐵氧化物(CFO)與鈣鐵氧化物/鎂鐵氧化物(CFO/MFO)接面奈米粉末光觸媒,藉由調整不同的後處理溫度與氧化物與燃劑之比例(φ),以及加入硝酸銨,製備不同樣貌之CFO(CFO-φ)以及CFO/MFO(CFO-Mg-φ與CFO-Mg-N-φ)異質接面結構之粉末光觸媒。不含鎂純相之CFO-0.6表面型貌為聚集之顆粒狀,進行連續式系統之光還原二氧化碳測試結果顯示,純CaFe2O4光觸媒活性甚低,無法偵測到產物。而含鎂之CFO-Mg系列粉末光觸媒,隨著φ質的提升,顆粒的分散性增加。於連續式系統之光還原二氧化碳中,以CFO-Mg-0.6為光觸媒時之主要產物為CH4及C2H4O,產量分別為1.1 μmol/g/h及0.66 μmol/g/h。透過HR-TEM分析可知,CFO-Mg-0.6由 CaFe2O4、少量Ca2Fe2O5及Mg2Fe2O4所組成。以硝酸銨輔助製備CFO-Mg-N粉末光觸媒,隨著φ值提升,表面型貌從片狀聚集,變為顆粒堆疊狀。CFO-Mg-N-0.48 (C2H4O產量為0.14 μmol/g/h)具有CaFe2O4、Mg2Fe2O4及Ca4Fe9O17。相較於CFO-0.6與CFO-Mg-N-0.48,CFO-Mg-0.6光還原二氧化碳效率明顯提升之結果,我們推測CaFe2O4/ Mg2Fe2O4接面之形成,可能為光催化二氧化碳轉換效能顯著提升之關鍵。

    Calcium ferrites powders and calcium ferrite/magnesium ferrite heterostructured powders have been synthesized using solution combustion method. Fuel/oxidizer ratio and the amount of NH4NO3 influence the phases of calcium ferrites.
    No product was detected over CFO-0.6 which possesses pure CaFe2O4 phase for CO2 conversion in the continuous system. Nevertheless, the formation of C2H4O is detected in the batch system with a yield of 0.1 μmol/h/g.
    The yields of CH4 and C2H4O over CFO-Mg-0.6 which is mainly composed of CaFe2O4 and Mg2Fe2O4 are 1.1 μmol/h/g and 0.66 μmol/h/g, respectively.
    Only C2H4O is acquired from CO2 photoconversion over CFO-Mg-0.4 (0.09 μmol/h/g) and CFO-Mg-N-0.48 (0.14 μmol/h/g) which consist of CaFe2O4 /Ca2Fe2O5 / Mg2Fe2O4 and CaFe2O4 /Ca4Fe9O17 /Mg2Fe2O4 , respectively.

    摘要 I Abstract II 致謝 VII 總目錄 VIII 圖目錄 XII 表目錄 XVII 第一章 緒論 1 1-1 前言 1 1-2 半導體材料還原二氧化碳 3 1-2-1 光觸媒 3 1-2-2 基本原理 3 1-2-3 效率改善策略 8 1-2-4 實驗系統 10 1-3 研究動機 13 第二章 文獻回顧 15 2-1 鈣鐵氧化物光還原之研究 15 2-1-1 鈣鐵氧化物結構與應用 15 2-1-2 鈣鐵氧化物相平衡 17 2-1-3 鈣鐵氧化物光觸媒特性 19 2-1-4 鈣鐵氧化物(CaFe2O4)與鎂鐵氧化物(MgFe2O4)粉末異質接面之光觸媒特性 20 2-1-5 赤鐵礦/鈣鐵氧化物(Ca2Fe2O5)異質接面 25 2-2 溶液燃燒法 27 2-2-2 硝酸氨輔助之溶液燃燒法 31 2-2-3 溶液燃燒法製備鈣鐵氧化物(CaFe2O4) 33 2-2-4 溶液燃燒法製備光觸媒於二氧化碳光轉換之應用 35 第三章 實驗 36 3-1 實驗材料 36 3-1-1 製備鈣鐵氧化物材料 36 3-1-2 製備鎂鐵氧化物(MFO)/鈣鐵氧化物(CFO)材料 36 3-1-3 硝酸銨輔助製備鎂鐵氧化物(MFO)/鈣鐵氧化物(CFO)材料 37 3-1-4 二氧化碳光還原實驗材料 37 3-1-5實驗儀器設備 38 3-2 實驗流程與步驟 40 3-2-1 坩堝清潔 41 3-2-2 成長鈣鐵氧化物粉末 41 3-2-3 成長鎂鐵氧化物(MFO)/鈣鐵氧化物(CFO)粉末 42 3-2-4 硝酸銨輔助製備鎂鐵氧化物(MFO)/鈣鐵氧化物(CFO)粉末 42 3-2-5 二氧化碳轉換反應 43 3-3 分析與鑑定 44 3-3-1 掃描式電子顯微鏡(scanning electron microscope) 44 3-3-2 穿透式電子顯微鏡(transmission electron microscopy) 45 3-3-3 拉曼光譜分析儀(raman spectroscopy) 47 3-3-4 紫外光可見光吸收光譜儀(UV-Visible Absorption Spectrometer) 49 3-3-5 X射線光電子能譜(X-ray photoelectron spectroscopy) 51 3-3-6 X光繞射儀(X-ray diffraction) 51 3-3-7 氣相層析儀(gas chromatography) 52 第四章 結果與討論 53 4-1熱處理溫度對鈣鐵氧化物(CFO)之影響 53 4-1-1 CFO之形貌與相態分析 53 4-1-2 CFO之光學特性分析 56 4-2燃劑與氧化物比例(φ)對鈣鐵氧化物(CFO)之影響 57 4-2-1 CFO之形貌與相態分析 57 4-2-2 CFO之光學特性分析 62 4-2-3 CFO之光還原二氧化碳效果 63 4-3 燃劑與氧化物比例(φ)對鎂鐵氧化物(MFO)/鈣鐵氧化物(CFO)異質結構光觸媒之影響 65 4-3-1 表面型貌與結晶相態分析 65 4-3-2 CFO-Mg之光學特性分析 71 4-3-3 CFO-Mg光觸媒之光還原二氧化碳效果 72 4-3-4 CFO-Mg之化學組態分析 75 4-4 硝酸銨輔助製備鎂鐵氧化物(MFO)/鈣鐵氧化物(CFO) 77 4-4-1 CFO-Mg-N之形貌與相態分析 77 4-4-2 CFO-N之光學特性分析 82 4-4-3 CFO-Mg-N光觸媒之光還原二氧化碳效果 83 4-5 CFO之相態對電子產率之影響及二氧化碳吸附之結果 86 第五章 結論 87 參考文獻 89

    1. Murielle Schreck and Markus Niederberger, Photocatalytic Gas Phase Reactions.Chem. Mater, 2019, 31(3) 597-618
    2. Chunling Wang, Zhuxing Sun, Ying Zheng and Yun Hang Hu, Recent progress in visible light photocatalytic conversion of carbon dioxide. J. Mater. Chem. A, 2019, 7 ,p. 865-887
    3. White, J. L., Baruch, M. F., Pander III, J. E., Hu, Y., Fortmeyer, I. C., Park, J. E., and Shaw,T.W, Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews, 2015, 115(23):p. 12888-12935.
    4. Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., and Li, C., Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 2014, 114(19):p. 9987-10043.
    5. Nick Serpone, Rita Terzian, Claudio Minero, Heterogeneous Photocatalyzed Oxidation of Phenol, Cresols, and Fluorophenols in TiO2 Aqueous Suspensions, Photosensitive Metal Organic Systems, American Chemical Society, Washington, 1993
    6. Jiang, Z., Xiao, T., Kuznetsov, V. Á., and Edwards, P. Á. (2010). Turning carbon dioxide into fuel., Turning carbon dioxide into fuel. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1923):p. 3343.
    7. Balzani, V., Scandola, F, Light-Induced and Thermal Electron-Transfer Reactions, Energy Resources through Photochemistry and Catalysis, 1sted., Academic press, New York, 1983.
    8. Li, X., Wen, J., Low, J., Fang, Y., and Yu, J., Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials, 2014. 57(1):p. 70-100.
    9. Ola, O. and M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24:p. 16-42.
    10. Sushil Kumar Saraswat, Dylan D. Rodene, Ram B. Gupta, Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light, Renewable and Sustainable Energy Reviews,2018, 89:p. 228-248
    11. Indrakanti, V.P., J.D. Kubicki, and H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy and Environmental Science, 2009. 2(7): p. 745-758.
    12. Yang, M. Q., & Xu, Y. J, Photocatalytic conversion of CO2 over graphene-based composites: current status and future perspective. Nanoscale Horizons, 2016, 1(3):p. 185-200.
    13. Amy L. Linsebigler, Guangquan. Lu, John T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results Chemical Reviews.1995, 95(3):p. 735-758
    14. Ji, Y., and Luo, Y, New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2 (101) Surface: The Essential Role of Oxygen Vacancy. Journal of the American Chemical Society, 2016, 138(49):p. 15896-15902.
    15. Ji, Y., and Luo, Y, Theoretical Study on the Mechanism of Photoreduction of CO2 to CH4 on the Anatase TiO2 (101) Surface., ACS Catalysis, 2016, 6(3):p. 2018-2025.
    16. Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F., and Koper, M. T., Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide., The Journal of Physical Chemistry Letters, 2015, 6(20):p. 4073-4082.
    17. Xiang, X., F. Pan, and Y. Li, A review on adsorption-enhanced photoreduction of carbon dioxide by nanocomposite materials., Advanced Composites and Hybrid Materials, 2018, 1(1):p. 6-31.
    18. Laursen, S., and Poudyal, S., Photo-and Electro-Catalysis:CO2 Mitigation Technologies., In Novel Materials for Carbon Dioxide Mitigation Technology, Elsevier, 2015, p. 233-268.
    19. Tsai, C. W., Chen, H. M., Liu, R. S., Asakura, K., and Chan, T. S., Ni@NiO Core–Shell Structure-Modified Nitrogen-Doped InTaO4 for Solar-Driven Highly Efficient CO2 Reduction to Methanol. The Journal of Physical Chemistry C, 2011, 115(20):p. 10180-10186.
    20. Wang, Z. Y., Chou, H. C., Wu, J. C., Tsai, D. P., and Mul, G, CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Applied Catalysis A: General, 2010, 380(1): p. 172-177.
    21. Wang, Y., AlOtaibi, B., Chowdhury, F. A., Fan, S., Kibria, M. G., Li, L., and Mi, Z., Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes., APL Materials, 2015. 3(11):p. 116106.
    22. Guangcheng, X., O. Shuxin, and Y. Jinhua, General Synthesis of Hybrid TiO2 Mesoporous “French Fries” Toward Improved Photocatalytic Conversion of CO2 into Hydrocarbon Fuel: A Case of TiO2/ZnO. Chemistry-A European Journal, 2011. 17(33):p. 9057-9061.
    23. Arvind Varma,Alexander S. Mukasyan,Alexander S. Rogachev, and Khachatur V. Manukya, Solution Combustion Synthesis of Nanoscale Materials, Chem. Rev. 2016. 116:p. 14493−14586
    24. Indrakanti, V.P., H.H. Schobert, and J.D. Kubicki, Quantum Mechanical Modeling of CO2 Interactions with Irradiated Stoichiometric and Oxygen-Deficient Anatase TiO2 Surfaces: Implications for the Photocatalytic Reduction of CO2. Energy and Fuels, 2009, 23(10):p. 5247-5256.
    25. Liu, L., Zhao, H., Andino, J. M., and Li, Y., Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry., ACS Catalysis, 2012, 2(8):p. 1817-1828.
    26. Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazábal, G. O., and Pérez-Ramírez, J, Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy and Environmental Science, 2013, 6(11):p. 3112-3135.
    27. Dilla, M., Schlögl, R., & Strunk, J., Photocatalytic CO¬2 Reduction Under Continuous Flow High-Purity Conditions: Quantitative Evaluation of CH4 Formation in the Steady-State., ChemCatChem, 2017, 9(4):p. 696-704.
    28. Wurts, W. A., and Durborow, R. M., Interactions of pH , Carbon Dioxide , Alkalinity and Hardness in Fish Ponds, South. Reg. Aquac. Cent, 1992, 0(464):p. 1-4.
    29. Kimfung Li, Xiaoqiang An, Kyeong Hyeon Park , Majeda Khraisheh , Junwang Tang, A critical review of CO2 photoconversion: Catalysts and reactors, Catalysis Today, 2014, 224:p. 3-12
    30. Wang, W. N., An, W. J., Ramalingam, B., Mukherjee, S., Niedzwiedzki, D. M., Gangopadhyay, S., & Biswas, P., Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals. Journal of the American Chemical Society, 2012. 134(27):p. 11276-11281.
    31. Morris, A.J., G.J. Meyer, and E. Fujita, Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Accounts of Chemical Research, 2009, 42(12):p. 1983-1994.
    32. Matsumoto Y. Sugiyama K., Sato E. I., Improvement of CaFe2O4 Photocathode by Doping with Na and Mg , Solid State Chem., 1988, 74 (1):p. 117-125
    33. Cornell, R.M., Schwertmann, U., The Iron Oxides: Structure, Properties, Re-actions, Occurrences and Uses, Wiley-Blackwell, 2003
    34. Carmelo Giacovazzo, H. L. Monaco, D. Viterbo, F. Scordari , G. Gilli ,
    G. Zanotti, M. Catti, Fundamentals of Crystallography, IUCr-Oxford, New York, 1992
    35. Shannon, R.D.m Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides., Acta. Crystallogr. A, 1976, 32:p. 751-767.
    36. Dereje Taffa, Ralf Dillert, Anna Ulpe, Katharina C. Bauerfeind, Thomas Bredow, Detlef Bahnemann, Michael Wark, Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3−xO4) for water splitting: a mini-review, J. of Photonics for Energy, 2016, 7(1), 012009
    37. Khanna, L., and Verma, N. K, Size-dependent magnetic properties of calcium ferrite nanoparticles, J. Magn. Magn. Mater, 2013, 336:p. 1-7
    38. Ida, S., Yamada, K., Matsunaga, T., Hagiwara, H., Matsumoto, Y., and Ishihara, T., Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water, J. Am. Chem. Soc, 2010, 132: p. 17343-17345
    39. Pardeshi, S. K., and Pawar, R. Y., Optimization of reaction conditions in selective oxidation of styrene over fine crystallite spinel-type CaFe2O4 complex oxide catalyst, Mater. Res. Bull, 2010. 45:p. 609-615
    40. Yasumichi Matsumoto, Michio Obata, Jukichi Hombo, Photocatalytic Reduction of Carbon Dioxide on p-Type CaFe2O4 Powder, J. Phys. Chem.1994, 98(11):p. 2950-2951
    41. Dadwal, M., Solan, D., & Pradesh, H, Polymeric nanoparticles as promising novel carriers for drug delivery: an overview, J. Adv. J. Adv. Pharm. Educ. Res. Jan.-Mar.2014, 4(1):p.20-30
    42. Levi.A.F.J., Semiconductor band structure and heterostructures, Essential Semiconductor Laser Device Physics, Morgan and Claypoolm, California, 2018
    43. Jingxiang Low, Chuanjia Jiang, Bei Cheng, Swelm Wageh, Ahmed A. Al Ghamdi, Jiaguo Yu, A Review of Direct Z-Scheme Photocatalysts, Small Methods, 2017, 1(5), 1700080
    44. Hyun Gyu Kim, Pramod H. Borse, Jum Suk Jang, Euh Duck Jeong, Ok-Sang Jung, Yong Jae Suhd and Jae Sung Lee, Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis, Chem. Commun., 2009, 33:p. 5889–5891
    45. Šutka, A., Vanags, M., Joost, U., Šmits, K., Ruža, J., Ločs, J., and Juhna, T., Aqueous synthesis of Z-scheme photocatalyst powders and thin-film photoanodes from earth abundant elements., Journal of Environmental Chemical Engineering, 2018, 6(2):p. 2606-2615.
    46. Merzhanov A. G., Borovinskaya I. P., Self-Propagating High Temperature Synthesis of Inorganic Compounds, Dokl. Akad. Nauk SSSR, 1972. 204(2):p. 366−369.
    47. Merzhanov A. G., The Chemistry of Self-Propagating High Temperature Synthesis. J. Mater. Chem., 2004, 14(12):p. 1779−1786.
    48. Bonneau P. R., Jarvis R. F., Kaner R. B., Rapid Solid-State Synthesis of Materials from Molybdenum Disulphide to Refractories., Nature 1991, 349(6309):p. 510−512.
    49. Mukasyan A. S., Dinka P., Novel Approaches to SolutionCombustion Synthesis of Nanomaterials., Int. J. Self-Propag. High-Temp. Synth., 2007, 16(1):p. 23−35.
    50. Ianoş R., Lazǎu I., Pǎcurariu C., Barvinschi, P. Fuel Mixture Approach for Solution Combustion Synthesis of Ca3Al2O6 Powders. Cem. Concr. Res., 2009, 39(7):p. 566−572.
    51. Deshpande K., Mukasyan A., Varma A., Direct Synthesis of Iron Oxide Nanopowders by the Combustion Approach: Reaction Mechanism and Properties., Chem. Mater., 2004, 16(24):p. 4896−4904.
    52. Manukyan K. V., Cross A., Roslyakov S., Rouvimov S., Rogachev A. S., Wolf E. E., Mukasyan A. S., Solution Combustion Synthesis of Nano-Crystalline Metallic Materials: Mechanistic Studies., J. Phys. Chem. C, 2013, 117(46):p. 24417−24427.
    53. Jain S. R., Adiga K. C., Pai Verneker V. R. A, New Approach to Thermochemical Calculations of Condensed Fuel-Oxidizer Mixtures., Combust. Flame, 1981, 40:p. 71−79.
    54. González-Cortés L. S., Imbert F. E., Fundamentals Properties and Applications of Solid Catalysts Prepared by Solution Combustion Synthesis (SCS), Applied Catalysis A: General, 2013, 452:p. 117−131.
    55. KANG, Wooram; OZGUR, Derya Oncel; VARMA, Arvind. Solution combustion synthesis of high surface area CeO2 nanopowders for catalytic applications: reaction mechanism and properties., ACS Applied Nano Materials, 2018, 1(2):p. 675-685.
    56. DOM, Rekha; KIM, Hyun Gyu; BORSE, Pramod H. Photo chemical hydrogen generation from orthorhombic CaFe2O4 nanoparticles synthesized by different methods, ChemistrySelect, 2017, 2(8):p. 2556-2564.
    57. Vadivel, S., Maruthamani, D., Habibi-Yangjeh, A., Paul, B., Dhar, S. S., and Selvam, K., Facile synthesis of novel CaFe2O4/g-C3N4 nanocomposites for degradation of methylene blue under visible-light irradiation., Journal of colloid and interface science, 2016, 480:p. 126-136.
    58. Peng CHEN, Lin-Wen JIANG, Jin-Jun LIU, Shan-Shan YANG, Jiang-Tao LI, Hong-Bing CHEN, Jun HE, Yu WANG., Syntheses and Magnetic Properties of Spinel-Type MFe2O4 (M=Ca, Mg, Cu, Zn) Nanocrystalline Powders, Chinese Journal of Inorganic Chemistry, 2019, 35(6):p. 1101-1108.
    59. Williams, D.B. and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science., Springer., 2009
    60. Skoog, Douglas A., F. James Holler, and Stanley R. Crouch. Principles of instrumental analysis. Cengage learning, 2017.
    61. Phillips, B., and Muan, A., Phase equilibria in the system CaO-iron oxide in air and at 1 atm. O2 pressure., Journal of the American Ceramic Society, 1958, 41(11):p. 445-454.
    62. Hidayat, T., Shishin, D., Decterov, S. A., and Jak, E. Thermodynamic optimization of the Ca-Fe-O system. Metallurgical and Materials Transactions B, 2016, 47(1):p. 256-281.
    63. Kolev, N., Iliev, M. N., Popov, V. N., and Gospodinov, M., Temperature-dependent polarized Raman spectra of CaFe2O4., Solid state communications, 2003, 128(4):p. 153-155.
    64. Taffa, D. H., Dillert, R., Ulpe, A. C., Bauerfeind, K. C., Bredow, T., Bahnemann,D.W., and Wark, M., Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3− xO4) for water splitting: a mini-review., Journal of Photonics for Energy, 2016, 7(1):p. 012009.
    65. Ren, B., Huang, Y., Han, C., Nadagouda, M. N., and Dionysiou, D. D. , Ferrites as Photocatalysts for Water Splitting and Degradation of Contaminants. In Ferrites and Ferrates: Chemistry and Applications in Sustainable Energy and Environmental Remediation. American Chemical Society., 2016, p.79-112
    66. Šutka, A., Kodu, M., Pärna, R., Saar, R., Juhnevica, I., Jaaniso, R., and Kisand, V., Orthorhombic CaFe2O4: A promising p-type gas sensor., Sensors and Actuators B: Chemical, 2016, 224:p. 260-265.
    67. Kirchberg, K., and Marschall, R., Sol–gel synthesis of mesoporous CaFe2O4 photocathodes with hierarchical pore morphology., Sustainable Energy and Fuels, 2019, 3(5):p. 1150-1153.
    68. Sharma, N., Shaju, K. M., Rao, G. S., and Chowdari, B. V. R., Iron–tin oxides with CaFe2O4 structure as anodes for Li-ion batteries., Journal of power sources, 2003, 124(1), 204-212.
    69. Matsumoto, Y., Omae, M., Sugiyama, K., and Sato, E., New photocathode materials for hydrogen evolution: calcium iron oxide (CaFe2O4) and strontium iron oxide (Sr7Fe10O22)., Journal of Physical Chemistry, 1987, 91(3), 577-581.

    無法下載圖示 校內:2024-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE