簡易檢索 / 詳目顯示

研究生: 宋嘉銘
Song, Jia-Ming
論文名稱: 應用壓電材料於避震器之阻尼力控制
Use of Piezomaterials for Damping-force Control of Shock Absorber
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 68
中文關鍵詞: 避震器主動式半主動式
外文關鍵詞: Shock Absorber, Semi-active, Active
相關次數: 點閱:65下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   避震器在車輛懸吊系統中扮演極重要的角色,為能改善車輛的操控性與舒適性,開發能隨著路面狀況來改變阻尼力大小的主動式或半主動式避震器,成為現今必須進行的工作。本論文提出使用壓電感測器與壓電致動器的新型避震器,及利用8051單晶片、A/D轉換器、D/A轉換器完成電子訊號控制電路。將單筒避震器活塞之圓片閥以壓電陶瓷、壓電薄膜及樹脂製作。經由實驗與模擬來研究圓片閥的行為,結果顯示以此圓片閥進行阻尼力控制應有極佳的效應。

      Shock absorber plays an important role in the vehicle’s suspension system. For improving vehicle’s controllability and riding comfort, development of active or semi-active shock absorber to control the damping force for different road conditions is the necessary work now. In this thesis, we propose a new type of shock absorber using a piezoelectric sensor and actuator. We use 8051 chip, D/A converter and A/D converter to finish the electronic signal control circuit. The disk valve on the piston of the monotube shock absorber is made of piezoceramic, piezofilm and epoxy. Both simulation and experiment were performed to study of the disk valve. The results show the good promise for using this disk valve to control the damping force.

    摘要i 英文摘要ii 致謝iii 表目錄vi 圖目錄vii 第一章 緒論1 1-1研究動機1 1-2文獻回顧2 1-3本文研究4 第二章 實驗裝置、原理及程序6 2-1圓片閥的製作6 2-2電子訊號控制電路9 2-3識別阻尼比12 2-4驗證性實驗13 2-5電子訊號控制電路功能性測試14 第三章 有限元素法模擬16 3-1含壓電材料的結構動態方程式16 3-2模態分析21 3-3諧和反應分析23 3-4暫態分析24 第四章 結果與討論26 4-1數值收斂性與模態分析26 4-2模態阻尼比與諧和反應分析27 4-3暫態響應28 第五章 結論29 參考文獻30 附錄A:8051組合語言程式檔案59 附錄B:ANSYS建構元素之檔案60 附錄C:ANSYS模態分析之檔案63 附錄D:ANSYS諧和反應分析之檔案64 附錄E:ANSYS 暫態響應分析之檔案65 自述69

    1.Takuro, I., Fundamentals of Piezoelectricity, Oxford Science, New York, 1990.
    2.Bailey, T., Jame, T. and Hubbard J., “Distributed PiezoelectricPo- lymer Active Vibration Control of a Cantilever Beam,” AIAA Journal, Vol. 8, No. 5, 1985, pp. 605-611.
    3.Sridhar, R. T. and Nagi G. N., “A New Class of Smart Automotive Active Suspensions Using Piezoceramic Actuation.,” SAE Paper No. 950588, 1995
    4.Jenq, S. T. and Chang, C. K., “Characterization of Piezo-film Sensors for Direct Vibration and Impact Measurements,” Experimental Mechanics, Vol. 35, No. 3, 1995, pp. 224-232.
    5.Edward, F. C. and Javier, D. L., “Use of Piezoelectric Actuators as Elements of Intelligent Structures,” AIAA Journal, Vol. 25, No. 10, 1987, pp. 1373-1385.
    6.Holland, R., “Contour Extensional Resonant Properties of Rectangular Piezoelectric Plates,” IEEE Transactions on Sonics and Ultrasonics, Vol. 15, 1968, pp.97-105.
    7.Tiersten, H. F. Linear Piezoelectric Plate Vibrations , Plenum, New York, 1969.
    8.Kharouf, N. and Heyliger, P. R., “Axisymmetric Free Vibration of Homogeneous and Laminated Piezoelectric Cylinders,” Journal of Sound and Vibration, Vol. 174, No. 4, 1994, pp. 539-561.
    9.Kunkel, H. A., Locke, S. and Pikeroen, B., “Finite-Element Analysis of Vibrational Modes in Piezoelectric Ceramic Disks,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 37, No.4, 1990, pp. 311-328.
    10.Allik, H., and Hughes, T. J. R., “Finite Element Method for Piezoelectric Vibration,” International Journal Numerical Methods of Engineering, Vol. 2, 1970, pp.151-157.
    11.Duym, S., “Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics,” Vehicle System Dynamics, Vol. 33, 2000, pp. 261-285.
    12.Segel, L. and Lang, H. H., “The Mechanics of Automotive Hydraulic Dampers at High Stroking Frequencies,” Vehicle System Dynamics, Vol. 10, 1981, pp. 82-85.
    13.Besinger, F. H., Cebon, D. and Cole, D. J., “Damper Models for Heavy Vehicle Ride Dynamics,” Vehicle System Dynamics, Vol. 24, 1995, pp. 35-64.
    14.Duym, S., Stiens, R. and Reybrouck, K., “Evaluation of Shock Absorber Models,” Vehicle System Dynamics, Vol. 27, 1997, pp. 109-127.
    15.Basso, R., “Experimental Characterization of Damping Force in Shock Absorbers with Constant Velocity Excitation,” Vehicle System Dynamics, Vol. 30, 1998, pp. 431-442.
    16.Rosen, C. Z., Glremath, B. V., and Newnham, R., Piezoelectricity, American Institute of Physics, New York, 1992.
    17.Eernisse, E. P., “Variational Method for Electroelastic Vibration Analysis,” IEEE Transactions on Sonics and Ultrasonics, Vol. 14, 1967, pp.153-160.
    18.Holland, R., and Eernisse, E. P., “Variational Evaluation of Admittances of Multielectroded Three-Dimensional Piezoelectric Structure,” IEEE Transactions on Sonics and Ultrasonics, Vol. 15, 1968, pp.119-132.
    19.Bathe, K. J., Finite Element Procedures, Prentice-Hall, Englewood Cliffs, 1996.
    20.Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill Company, London, 1977.

    下載圖示 校內:立即公開
    校外:2004-07-15公開
    QR CODE