| 研究生: |
何旻潔 Ho, Min-Chieh |
|---|---|
| 論文名稱: |
高時間解析度地表導電率量測 Ground conductivity measurements with high temporal resolution |
| 指導教授: |
陳炳志
Chen, Alfred Bing-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 太空與電漿科學研究所 Institute of Space and Plasma Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 大氣導電率 、吉爾定電容器 、高時間解析度 |
| 外文關鍵詞: | Atmospheric Electric Conductivity, Gerdien Condenser, High Temporal Resolution |
| 相關次數: | 點閱:207 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣導電率受到離子濃度、遷移率等因素影響,在不同時間、高度、溫度與濕度條件,以及不同大氣組成成分的環境中會隨之變化。此外,於2011、2014年由郭政靈博士等人所提出的模型中,指出地震前兆可能導致地表導電率發生變化。本論文將發展高時間解析度的導電率量測儀器,可用於觀察導電率變化以及擾動因素。
於本論文中發展了電流型吉爾定電容器(Gerdien condenser)作為導電率量測儀器,並且提高時間解析度,以及重新設計電子電路以提升訊噪比,同時改善機械結構以降低溢漏電流與靜電附著對於量測之影響。
經由負離子產生器與真空乾燥箱進行測試與驗證後,吉爾定電容器可有效量測於不同離子濃度下之導電率變化,並移至戶外進行兩次長時間的導電率現地量測。分別觀察到導電率上升時,細懸浮微粒PM2.5與PM10之濃度也有上升的趨勢。以及導電率可能具有日週期變化:在上午10點時,導電率達到一天當中的最大值,並持續降低至下午三點的最低值。
The atmospheric conductivity varies with time, height, humidity and composed of the environment. In addition, an ionosphere-atmosphere-lithosphere coupling model proposed by Kuo et al. [2011, 2014] pointed out that the precursors of earthquake may also result a change of the conductivity at ground. The goal of this work is to design a Gerdien condenser with a high temporal resolution to observe the conductivity variation and its associations. Furthermore, the long-term in-situ conductivity monitoring can understand the circulation of the electric charges above the Earth's surface and the global electric circuit.
In this work, the circuit of the Gerdien condenser was redesigned, and the mechanical structure was enhanced to reduce the leakage current effectively and to solve the problem of the static charges adherence to the outer electrode. After the verification, this instrument can measure the variation of the conductivity at different ion concentrations effectively. Two experiments were carried out, and the variation of the conductivity associated with the PM2.5 and PM10 was observed, furthermore, the diurnal variation of the conductivity is also noted.
Allen, R. M. and H. Kanamori (2003), The Potential for Earthquake Early Warning in Southern California, Science, 300, 786-789.
Aplin, K. L. (2000), Instrumentation for Atmospheric Ion Measurements, PhD Thesis, University of Reading.
Bolt, B. A., and W. H. Freeman (2004), Earthquakes, 5th ed., New York.
Burt, D. A. (1967), The Development of a Gerdien Condenser for Sounding Rockets, Upper Air Research Laboratory, University of Utah, Scientific Reprot No. 8.
Chalmers, J. A. (1967), Atmospheric Electricity, 2nd ed., 515, Pergamon, Oxford, U. K.
Gerdien, H. (1905), Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 240.
Gish, O. H. (1951), Universal aspects of atmospheric electricity, In Compendium of Meteorology, edited by T. F. Malone, American Meteorological Society, Boston, 101-119.
Harrison, R. G. (2004), The global atmospheric electrical circuit and climate, Surveys in Geophysics, 25, 441-484.
Hatakeyama, H. et al. (1958), A radiosonde instrument for the measurement of atmospheric electricity and its flight results. In: Smith LG (ed) Recent advances in atmospheric electricity, Pergamon, New York.
Holzworth, R. H., K. W. Norville, P. M. Kintner, and S.P. Powell (1986), Stratospheric conductivity variations over thunderstorms, J. Geophys. Res., 91, 13257-13263.
Kamsali, N., B. S. N. Prasad, and J. Datta (2009), Atmospheric electrical conductivity measurements and modeling for application to air pollution studies, Advances in Space Research, 44, 1067-1078.
Kuo, C. L., J. D. Huba, G. Joyce, and L. C. Lee (2011), Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges, J. Geophys. Res., 116, A10317.
Kuo, C. L., L. C. Lee, J. D. Huba (2014), An improved coupling model for the lithosphere-atmosphere-ionosphere system, J. Geophys. Res., 119, 3189-3205.
Pawar, S. D., P. Murugavel, and D. M. Lal (2009), Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean, J. Geophys. Res., 114, D02205, doi:10.1029/2007JD009716.
Rosen, J. M., D. J. Hofmann, W. Gringel, J. Berlinski, S. Michnowski, Y. Morita, T. Ogawa, and D. Olson (1982), Results of an International Workshop on Atmopheric Elecrical Measurements, J. Geophys. Res., 87, 1219-1227.
Rycroft, M. J., and R. G. Harrison (2011), Electromagnetic atmosphere-plasma coupling the global atmospheric electric circuit., Space Sci. Rev., doi:10.1007/s11214-011-9830-8.
Swann, W. F. G. (1914), The theory of electrical dispersion into the free atmosphere, with a discussion of the theory of the Gerdien conductivity apparatus, and of the theory of the collection of radioactive deposit by a charged conductor, J. Terr. Mag. Atmos. Elect., 19, 81-92.
Thomson, J. J. (1928), Conduction of electricity through gases, 3rd edition, Cambridge University Press.
Widdel, H. U., G. Rose, and R. Borchers (1976), Experimental results on the variation of electric conductivity and ion mobility in the mesosphere, J. Geophys. Res., 81, 34, 6217-6220.
Winn, W. P., C. B. Moore, C. R. Holmes, and L. G. Byerley III. (1978), Thunderstorm on July 16, 1975, over Langmuir laboratory: a case study, J. Geophys. Res., 83, 3079-3091.
Woessner, R. H., W. E. Cobb, and H. Gunn (1958), Simultanenous measurements of the positive and negative light-ion conductivities to 26 km, J. Geophys. Res., 63, 171-180.
邱泰瑋(2017),「使用探空氣球量測對流雲中的電荷垂直分布」,國立成功大學太空與電漿科學研究所碩士論文。
葉爾君(2018),「劇烈天氣與地震之地表垂直電場變化」,國立成功大學太空與電漿科學研究所碩士論文。
賴炫禎(2018),「發展吉爾定電容器用於大氣導電率量測」,國立成功大學太空與電漿科學研究所碩士論文。