簡易檢索 / 詳目顯示

研究生: 蔡旻橋
Cai, Min-Ciao
論文名稱: 超音速榴彈砲氣動力分析
Aerodynamic analysis of the supersonic projectile
指導教授: 吳志勇
Wu, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系碩士在職專班
Department of Aeronautics & Astronautics (on the job class)
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 24
中文關鍵詞: 榴彈砲CFD船尾形後彈體
外文關鍵詞: Projectile, CFD, Boattailed afterbody
相關次數: 點閱:142下載:58
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著國防科技的進步,各國間的武力競爭越演越烈,生產出的砲彈 射程比以往更加的遠,速度也都突破了音速,身為國軍一員,希望藉由 本次的研究分析榴彈砲的流場變化,來研究出如何提升榴彈砲的射程及速度。
    本次實驗將使用 Ansys-CFD 套裝軟體 Fluent 來做 155mm 榴彈砲飛 行過程中的各項數據分析,藉由改變榴彈砲馬赫數及榴彈砲的船尾角度, 探討其阻力係數、壓力場、速度分佈圖、壓力分佈圖,在榴彈砲的飛行過程中,阻力係數的變化對提升射程及射速有很大的影響,本次研究也會透過此項特點來做改善,以提升榴彈砲的性能。
    透過改變馬赫數可發現榴彈砲周圍的震波,隨著馬赫數的增加由弓 形震波轉變成斜震波,壓力也隨之增加,透過模擬結果可發現次音速時 阻力係數隨著馬赫數的增加隨之上升,當達到 1 馬赫時為阻力係數最高 峰,接著隨之下降。
    透過改變船尾形後彈體角度,可發現不同的馬赫數下皆有其最佳的 船尾角度,船尾角度與阻力係數並非成線性成長,但可得知有船尾角度 的榴彈砲在次音速的部分比沒有船尾角度的榴彈降低了約 43%的阻力, 在超音速的部分降低了約 8.5%。

    As military technology developments have heated the arms race between nations, so have advancements in artillery technology, with increases in range and artillery rounds traveling at supersonic speeds. As a member of the armed forces, I hope to increase the speed and range of artillery projectiles by using this study to analyze their flow field changes.
    In an effort to adjust the projectile’s Mach number and boattail angle, this experiment uses Ansys Fluent CFD software to conduct data analysis on the 155mm projectile’s flight, utilizing the information to explore its drag coefficient, pressure field, velocity profile, and pressure distribution diagram. Any changes in the drag coefficient will significantly impact the range and speed of the artillery projectile during its flight; thus, this research seeks to enhance the artillery projectile’s performance by improving this specific feature.
    Mach number information revealed that as artillery projectiles increased in speed, their surrounding shock waves changed from bow shocks to oblique shocks, and their pressure gradually increased. In addition, simulations revealed that the drag coefficient in subsonic speeds would increase with any increases in Mach number, peaking at 1 Mach before subsequently decreasing.
    By changing the angle of the boattailed afterbody, we can see that there is an optimal boattail angle for different Mach numbers. Although the boattail angle and drag coefficient do not display linear growth, artillery projectiles with boattail angles reported drag 43% lower than those without boattail angles in subsonic speeds, and reported drag 8.5% lower in supersonic speeds respectively.

    摘要 i Extended Abstract ii 致謝 viii 目錄 ix 圖目錄 xi 表目錄 xii 第1章 前言 1 第2章 文獻回顧 2 2-1 榴彈砲之阻力分析 2 2-2 船尾形後彈體(Boattailing) 3 2-3 實驗方法與數值模擬比較 4 2-4 榴彈砲之空氣動力特性分析 5 第3章 研究方法 7 3-1 計算流體力學(CFD)模擬 7 3-2 建立155mm榴彈砲幾何模型及網格劃分 7 3-3 網格獨立性測試 8 3-4 控制方程式與紊流模型 9 3-5 邊界條件 11 第4章 結果與討論 13 4-1 榴彈砲模擬驗證 13 4-2 榴彈砲次音速及超音速阻力係數分析 13 4-3 不同馬赫數對壓力以及馬赫數(速度)分布之影響 14 4-4 不同船尾角度及馬赫數流場情形 17 第5章 結論及未來展望 22 參考文獻 23

    1. Suliman, M., et al. Computational investigation of base drag reduction for a projectile at different flight regimes. in International Conference on Aerospace Sciences and Aviation Technology. 2009. The Military Technical College.
    2. Viswanath, P., Flow management techniques for base and afterbody drag reduction. Progress in Aerospace Sciences, 1996. 32(2-3): p. 79-129.
    3. Wessam, M. and Z. Chen. Firing precision evaluation for unguided artillery projectile. in 2015 International Conference on Artificial Intelligence and Industrial Engineering. 2015. Atlantis Press.
    4. Wessam, M.E. and Z.H. Chen. Aerodynamic characteristics of unguided artillery projectile. in Advanced Materials Research. 2014. Trans Tech Publ.
    5. Reddy, D.S.K., P.K. Sah, and A. Sharma. Prediction of Drag Coefficient of a Base Bleed Artillery Projectile at Supersonic Mach number. in Journal of Physics: Conference Series. 2021. IOP Publishing.
    6. Wilcox, D.C., Turbulence modeling for CFD. Vol. 2. 1998: DCW industries La Canada, CA.
    7. Menter, F.R., M. Kuntz, and R. Langtry, Ten years of industrial experience with the SST turbulence model. Turbulence, heat and mass transfer, 2003. 4(1): p. 625-632.
    8. Robert L. McCoy, "Modern Exterior Ballistics", 4thedition. ISBN-0-7643-0720-7, Schiffir Publishing Ltd, 1998.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE