簡易檢索 / 詳目顯示

研究生: 陳昱翔
Chen, Yu-Hsiang
論文名稱: 藉由混合濺鍍與超快雷射直寫二維石墨烯微圖形
Two-Dimensional Graphene Micro-Patterns by Using Co-Sputtering and Ultrafast Laser Direct Writing
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 54
中文關鍵詞: 混合濺鍍鎳碳混合膜超快雷射直寫石墨烯微圖案多光子吸收
外文關鍵詞: Co-sputtering, Ni/C thin film, ultrafast laser direct writing, graphene micro-pattern, multiphoton absorption
相關次數: 點閱:124下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯(graphene)常藉由化學氣相沈積法(chemical vapor deposition)來成功地於催化金屬上成長出品質佳且大面積的石墨烯,但常因轉印過程中造成石墨烯薄膜的缺陷與破損,影響到最後薄膜的品質,另為了使石墨烯有更進一步的應用, 如何有效地成長出所需圖形化的石墨烯便成了一個研究議題。在本論文中先以混合濺鍍的方式沉積鎳碳混合膜,並在薄膜上滴上匹配油,目的是為了在雷射加工過程中,阻隔空氣參與反應,再藉由超快雷射加工系統瞬間在微小區域內快速的升溫與降溫的加熱的特性,將鎳薄膜達到瞬間加熱的效果,讓鎳薄膜對碳原子的溶解度提高,使碳原子可以輕易地溶入鎳薄膜中,而當溫度持續上升時,鎳金屬便扮演著持續催化碳原子石墨化的角色,於基板上成長出石墨烯微結構。最後,利用化學濕式蝕刻(氯化鐵或其他蝕刻金屬化學溶液)的方式蝕刻掉鎳薄膜,在所需基板上留下成長後的石墨烯微圖形。而在實驗結果發現,當鎳碳混合膜的厚度為65 nm、採用雷射功率35 mW、掃描速率2.5 kHz,並且藉由系統控制二維的石墨烯微圖形中,雷射點與點間的距離約50 nm時,可最穩定於基板上成長出石墨烯微圖形,也於量測點上發現有明顯的石墨烯拉曼訊號。此外,我們也藉由原子力顯微鏡觀察石墨烯微圖形的表面形貌,發現使用匹配油並無法完全阻隔空氣參與加工過程,依舊有氧化鎳形成。最後則是採用於鎳碳混合膜上部分性地濺鍍二氧化矽薄膜,厚度大約為400 nm,不僅可於加工的過程中完全防止空氣參與反應,也可於最後的蝕刻過程中,與鎳薄膜一起被帶走,真正實現在一般環境下,直接於所需基板上成長出石墨烯微圖形。利用此加工方式可以省去傳統方法上許多繁雜的製程、嚴苛的環境以及光罩的設計與製作,並可望在未來運用於電路描繪與三維微電極的製作。

    Graphene, often grow on catalytic metal successfully with good quality and large area by chemical vapor deposition. But the subsequent transfer process often cause the defects and damage, affecting the quality of graphene. In order to make graphene have a further application, how to effectively grow the required graphene patterns has become a research topic. In this thesis, we deposit Ni/C film by co-sputtering at first. In order to block air participating in the reaction during the laser processing, we dropped a layer of immersion oil on the Ni/C film. Owing to femtosecond laser pulse characteristics, it would lead to rapid heating and cooling in micro-areas. When the temperature rises, carbon atoms can easily diffuse into nickel. In the heating process, nickel acts like a catalytic role. Graphitization of carbon atoms to form graphene. Then, the remaining Ni/C film is removed by a wet chemical etching process, leaving the graphene micro-patterns on the substrate.
    In the experiment, we find that the thickness of Ni/C film is around 65 nm, laser power is 35 mW, scan rate is 2.5 kHz and the points between each other is around 50 nm, we can grow graphene stably. We also find that there are obvious Raman signals at measuring points. In addition, we observe the surface morphology of graphene by atomic force microscopy, finding that using immersion oil cannot completely block the air participating in the process. Therefore, we deposit a layer of silicon dioxide on the surface of the Ni/C film partially, the thickness is around 400 nm. It can not only block the air participating in the process completely, but also be taken away in the wet chemical etching process. Therefore, this method can grow graphene micro-patterns on required substrate with no complicated process, design of masks and subsequent transfer process. So, this method is expected to be used in circuit description and three -dimensional microelectrode in the future.

    摘要 I Extended Abstract III 誌謝 VII 圖目錄 XI 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究動機及目的 7 1-4 論文架構 8 第二章 混合濺鍍與超快雷射加工機制 9 2-1 混合濺鍍 10 2-1-1 濺鍍原理 10 2-1-2 輝光放電 11 2-2 射頻磁控濺鍍系統 14 2-3 實驗之濺鍍系統 16 2-4 多光子吸收效應 18 2-5 超快雷射加工系統 20 2-5-1 超快雷射之加工與應用 20 2-5-2 超快雷射熱效應及模擬 21 2-5-3 超快雷射光路系統 27 第三章 超快雷射誘發成長之石墨烯微圖形 31 3-1 鎳碳混合膜 32 3-2 超快雷射成長石墨烯於Ni/C薄膜 37 3-3 實驗結果與討論 39 第四章 結論與未來展望 48 參考文獻 51

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666-669 (2004).
    [2] A. Bonanni, A. H. Loo, and M. Pumera, “Graphene for impedimetric biosensing,” TrAC. 37, 12-21 (2012).
    [3] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, “Highly conducting graphene sheets and Langmuir-Blodgett films,” Nature Nanotechnology 3, 538-542 (2008).
    [4] C. Berger, Z. M. Song, T. B. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” J. Phys. Chem. B 108, 19912-19916 (2004).
    [5] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312-1314 (2009).
    [6] B. C. Bayer, D. A. Bosworth, F. B. Michaelis, and S. Hofmann, ”In situ observations of phase transitions in metastable Nickel(Carbide)/Carbon nanocomposites,” J. Phys. Chem. C 120, 22571−22584 (2016).
    [7] M. Goepper-Mayer, “Ober elementaraktemit zwei quantensprungen,” Annalen der Physik 9, 273-294 (1931).
    [8] W. Denk, J. H. Stricker, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990).
    [9] A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291 (2011).
    [10] Y. M. Lin, A. V. Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, “Wafer-scale graphene integrated circuit,” Science 332, 1294-1297 (2011).
    [11] M. Pumera, “Graphene in biosensing,” Material Today 14, 308-315 (2011).
    [12] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706-710 (2009).
    [13] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature 442, 282-286 (2006).
    [14] Y. Hernandaz, V. Nicolosi, and J. N. Coleman “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotechnology 3, 563-568 (2008).
    [15] A. Reina, X. Jia, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Letters 9(1), 30-35 (2009).
    [16] Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H. B. Sun, and F. S. Xiao, “Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction,” Nanotoday 5, 15-20 (2010).
    [17] J. B. Park, W. Xiong, Z. Q. Xie, Y. Gao, M. Qian, M. Mitchell, M. M. Samani, Y. S. Zhou, L. Jiang, and Y. F. Lu, “Transparent interconnections formed by rapid single-step fabrication of graphene patterns,” Applied Physics Letters 99, 053103 (2011).
    [18] H. Medina, C. C. Huang, H. C. Lin, Y. H. Huang, Y. Z. Chen, W. C. Yen, and Y.-L. Chueh, “Ultrafast graphene growth on insulators via metal- catalyzed crystallization by a laser irradiation process: from laser selection, thickness control to direct patterned graphene utilizing controlled layer segregation process,” Small 25, 3017-3027 (2015).
    [19] W. Xiong, Y. S. Zhou, W. J. Hou, L. J. Jiang, Y. Gao, L. S. Fan, L. Jiang, J. F. Silvain, and Y. F. Lu, “Direct writing of graphene patterns on insulating substrates under ambient conditions,” Scientific Reports 4, 4892 (2014).
    [20] 田民波,薄膜技術與薄膜材料,第一版,五南圖書出版社(2012)。
    [21] 李正中,薄膜光學與鍍膜技術,第七版,藝軒圖書出版社(2012)。
    [22] D. L. Smith, Thin Film Deposition: Principles and Practice, McGraw-Hill (1995).
    [23] 黃崑財,嶄新表面電漿子感測元件,國立中央大學光電科學研究所碩士論文(2004)。
    [24] K. Sugioka and Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab on a Chip 12, 3576-3589 (2012).
    [25] F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass,” Sensors 14, 19402-19440 (2014).
    [26] S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” J. Microelectromech. Syst. 7(4), 411-415 (1998).
    [27] C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using rose bengal,” J. Phys. Chem. B 103, 3737-3741 (1999).
    [28] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers studies of reaction efficiencies and applications in sustained release,” Macromolecules 33, 1514-1523 (2000).
    [29] K. Koenig, “Multiphoton microscopy in life sciences,” J. Microscopy 200, 83-104 (2000).
    [30] M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications, Springer-Verlag (1996).
    [31] P. S. Binder, G. O. Waring III, P. N. Arrowsmith, and C. Wang, “Histopathology of traumatic corneal rupture after radial keratotomy,” Arch. Opthalmol. 106, 1584-1590 (1988).
    [32] S.-S. Wellershoff, J. Hohlfeld, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A 69, S99-S107 (1999).
    [33] M. Losurdo, M. M. Giangregorio, and G. Bruno, “Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure,” Phys. Chem. Chem. Phys. 13, 20836-20843 (2011).

    下載圖示 校內:2019-07-14公開
    校外:2019-07-14公開
    QR CODE