簡易檢索 / 詳目顯示

研究生: 郭奇澤
Kuo, Chi-Tse
論文名稱: 以FPGA為基礎之超聲波影像掃描系統暨非浸水式超聲波檢測
An FPGA-Based Ultrasonic Image Scanning System and Non-immersed Ultrasonic Inspection
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 133
中文關鍵詞: 非浸水式超聲波非破壞性檢測現場可程式閘陣列超聲波影像掃描
外文關鍵詞: field programmable gate array, FPGA, non-destructive inspection, NDI, non-immersion scanning, ultrasonic scanning system
相關次數: 點閱:98下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以FPGA建構超聲波影像掃描系統及設計非浸水式掃描機構來進行超聲波探傷。利用FPGA晶片之高整合度與靈活性來進行即時運動監控、聲波觸發、訊號擷取及資料分析。以最精簡資料量回傳降低系統負荷,可使主機專於與人機互動提升系統效能。在非浸水式掃描上為以簡潔機構設計來進行易鏽蝕物品之非破壞性檢測。
    本掃描系統以FPGA實現可多分層及可平整度修正之超聲波訊號量測。在FPGA中使用兩段式訊號分析,利用表面偵測功能即時量測修正平整度0.23 mm或傾斜5.2度內之試片,並將訊號進行100連續窗格切割實現多層掃描。系統可使用掃描模式為A-scan、B-scan、P-scan、C-scan、X-scan、G-scan及S-scan。系統垂直掃描解析度為3 μm,水平解析度為20 μm,複雜大曲率試片為50 μm。系統掃描速度最高可達2 m/s,額定掃描取樣率最高為22 kHz,平均取樣率為8 kHz,不遜於市售一般超聲波掃描機台。
    在非浸水式掃描上,量測試片表面只需極微量水耦合即可進行 220 mm×220 mm大範圍平面掃描,在小範圍內其解析度與影像品質與浸水式掃描相同,但大範圍試片如水平度不足時會有垂直訊號偏差發生。

    This study constructs a Field Programmable Gate Array (FPGA) based non-destructive inspection system and a non-immersion ultrasonic scanning device. The inspection system exploits the high integration and flexibility of FPGA for real-time motion monitoring, acoustic trigger, data acquisition and signal analysis and reduces the host system loading by sending shortest data. Furthermore a concise concept of non-immersion ultrasonic scanning device is designed for non-destructive testing specimen that is apt to rust.
    This scanning system realizes a multiple profile and flatness correction ultrasonic signal measurement with FPGA chip. The FPGA programs use 100 multiple gates to split signal for realizing multiple profiles and two-step analysis to fix the sample’s flatness problem. The available scanning modes include A-scan, B-scan, P-scan, C-scan, X-scan, G-scan, and S-scan. A horizontal deviation less than 0.23 mm or 5.2 degree can be fixed by the surface detection function in the FPGA.
    The maximum scanning speed reaches 2000 mm/s. The vertical and horizontal scanning resolution of simple specimen is 3 μm and 20 μm respectively and the horizontal scanning resolution of complex large curvature specimen is 50 μm. The nominal sampling rate is 22 kHz and the average sampling rate is 8 kHz. Its performance is compatible with some commercial models of ultrasonic inspection systems.
    For non-immersion scanning, a special device is developed in order to couple the specimen surface with very little water for scanning over a 220 mm × 220 mm large area. The results of non-immersion and immersion resolution and image quality are quite the same. However, if the specimen is not well leveled over a wide range, the signals will show vertical deviations.

    摘要 I Abstract II 誌謝 XIV 目錄 XV 表目錄 XVIII 圖目錄 XIX 符號 XXV 第一章 導論 1 1.1 研究背景與目的 1 1.2 超聲波影像掃描系統發展現況 4 1.3 本文結構 15 第二章 超聲波影像掃描原理與類型 16 2.1 超聲波的產生與接收 16 2.2 聲波傳遞原理 17 2.2.1 聲波種類 17 2.2.2 反射、穿射及折射 17 2.2.3 聲波之衰減與耦合 20 2.3 多層介質聲波傳遞過程 22 2.3.1 窗格選取 25 2.4 超聲波影像掃描類型 26 2.4.1 一維掃描 27 2.4.2 二維掃描 28 2.4.3 三維掃描 30 2.5 掃描解析度 35 2.5.1 運動機構解析度 35 2.5.2 超聲波換能器聚焦點大小 38 2.5.3 換能器頻率 41 2.5.4 訊號取樣頻率 43 2.6 超聲波掃描速度 45 第三章 系統硬體架構 46 3.1 系統簡介 46 3.2 脈衝產生接收器 47 3.3 雙軸龍門線性位移平台 49 3.4 NI FlexRIO系統 51 3.4.1 嵌入式控制器 53 3.4.2 現場可程式閘陣列控制模組 55 3.4.3 示波器前端模組 57 3.4.4 運動控制模組 61 3.5 超聲波換能器 63 3.5.1 商用聲波換能器 64 3.5.2 自製聲波換能器 70 第四章 程式架構 73 4.1 FPGA韌體程式 75 4.1.1 儀器同步控制 75 4.1.2 聲波訊號分析程式 78 4.2 主機軟體程式 82 4.2.1 運動控制卡控制程式 82 4.2.2 影像繪圖及系統記憶體管理程式 84 4.2.3 聲波影像掃描與FPGA控制主程式 86 第五章 實驗量測與結果 90 5.1 掃描功能測試 90 5.1.1 層狀試片 90 5.1.2 非平面試片 102 5.2 性能測試 108 5.2.1 掃描速度與掃描品質測試 108 5.2.2 掃描解析度測試 114 第六章 非浸水式掃描 121 6.1 研究動機 121 6.2 非浸水式掃描原理 121 6.3 非浸水式機構 123 6.4 掃描結果 125 第七章 結論與未來展望 128 參考文獻 130

    [1] N. W. Gillham, A life of Sir Francis Galton: From African exploration to the birth of eugenics, New York Oxford University Press, 2001.
    [2] A. N. Popper, and R. R. Fay, Hearing by Bats, New York: Springer-Verlag New York, 1995.
    [3] B. G. Pollet, Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution, United Kingdom: John Wiley & Sons, Ltd, 2012.
    [4] L. Flax, W. P. Mason, and R. Thurston, Physical acoustics: principles and methods, US: Academic Press, 1981.
    [5] D. E. Bray, and D. McBride, Nondestructive testing techniques, New York: Wiley, 1992.
    [6] Y.-H. Liu, “The Application Of Ultrasonic Detection On The Measurement Of Fatigue Crack,” System and Naval Mechatronic Engineering, National Cheng Kung University, 2004.
    [7] PVATePla. "Products, general," June 18, 2014; http://www.pva-analyticalsystems.com/en/products.
    [8] OKOS. "systems," June 18, 2014; http://www.okos.com/systems.
    [9] Sonix. "Products," June 18, 2014; http://www.sonix.com/.
    [10] Hitachi. "Scanning Acoustic Tomograph / Inspection Equipment," June 18, 2014; http://www.hitachi-power-solutions.com/en/products/.
    [11] Sonoscan. "Advanced Features," June 18, 2014; http://www.sonoscan.com/technology/advanced-features.html.
    [12] Sonoscan. "Sonoscan Instruments," June 18, 2014; http://www.sonoscan.com/instruments/instruments.html.
    [13] Sonatest, Transducer Catalogue, United Kingdom: Sonatest Ltd., 2014.
    [14] J. D. Achenbach, Wave propagation in elastic solids, New York: American Elsevier Pub. Co., 1984.
    [15] A. Briggs, An Introduction to Scanning Acoustic Microscopy, New York: Oxford University Press, 1985.
    [16] T. L. Szabo, “Time domain wave equations for lossy media obeying a frequency power law,” The Journal of the Acoustical Society of America, vol. 96, no. 1, pp. 491-500, 1994.
    [17] A. Briggs, and O. Kolosov, Acoustic microscopy, 2nd ed., pp. 1-122, New York Oxford University Press, 2009.
    [18] R. A. Lemons, and C. F. Quate, "Acoustic microscopy," Physical Acoustics V14: Principles and Methods, W. P. Mason and R. N. Thurston, eds., pp. 1-92, US: Elsevier Science, 1979.
    [19] G. W. C. Kaye, and T. H. Laby, Tables of physical and chemical constants and some mathematical functions, United Kingdom: Longmans, 1986.
    [20] A. R. Selfridge, “Approximate Material Properties in Isotropic Materials,” Sonics and Ultrasonics, IEEE Transactions on, vol. 32, no. 3, pp. 381-394, 1985.
    [21] A. R. Selfridge, “Approximate material properties in isotropic materials,” IEEE transactions on sonics and ultrasonics, vol. 32, no. 3, pp. 381-394, 1985.
    [22] J. S. Foster, and D. Rugar, “Low-Temperature Acoustic Microscopy,” Sonics and Ultrasonics, IEEE Transactions on, vol. 32, no. 2, pp. 139-151, 1985.
    [23] J. Heiserman, D. Rugar, and C. F. Quate, “Cryogenic acoustic microscopy,” The Journal of the Acoustical Society of America, vol. 67, no. 5, pp. 1629-1637, 1980.
    [24] Y.-F. Chang, Y. Ma, C.-M. Lin, and J.-H. Lee, “Reverberation reduction in ultrasonic images via predictive deconvolution,” NDT & E International, vol. 41, no. 4, pp. 235-241, Jun, 2008.
    [25] F. Gran, and J. A. Jensen, “Spatial encoding using a code division technique for fast ultrasound imaging,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 55, no. 1, pp. 12-23, Jan, 2008.
    [26] Winbond, W83627EHF & W83627EHG Winbond LPC I/O datasheet, 1.0 ed., Taiwan: Winbond Corp., 2006.
    [27] Y. F. Tien, “High Speed Ultrasonic Image Inspection System,” Mechanical Engineering, National Cheng Kung University, Taiwan, 2001.
    [28] X. Ming-Hua, “Ultrasonic Image Scanning System and Material Evaluation,” Mechanical Engineering, National Cheng Kung University, Taiwan, 2000.
    [29] G. S. Kino, Acoustic waves : devices, imaging, and analog signal processing, pp. 154-317, Englewood Cliffs, N.J.: Prentice-Hall, 1987.
    [30] A. Briggs, and W. Arnold, Advances in Acoustic Microscopy, US: Springer, 1996.
    [31] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing, Upper Saddle River, N.J.: Prentice Hall, 1999.
    [32] J. R. Weaver, C. W. Daft, and G. D. Briggs, “A quantitative acoustic microscope with multiple detection modes,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 36, no. 5, pp. 554-560, 1989.
    [33] OlympusNDT, Model 5900 Ultrasonic Pulser/Receiver User's Manual, US: Olympus NDT, 2005.
    [34] N. I., NI PXIe-1062Q User Manual and Specifications, US: National Instruments, 2012.
    [35] N. I., NI PXIe-8108 User Manual and Specifications, US: National Instruments, 2010.
    [36] Xilinx, Virtex-5 Family Overview, 5.0 ed., US: Inc. XILINX, 2009.
    [37] Xilinx, Virtex-5 FPGA Data Sheet: DC and Switching Characteristics, 5.3 ed., US: Inc. XILINX, 2010.
    [38] Xilinx, Virtex-5 FPGA RocketIO GTP Transceiver User Guide, 2.1 ed., US: Inc. XILINX, 2009.
    [39] N. I., NI FlexRIO FPGA Module Installation Guide and Specifications, US: National Instruments, 2011.
    [40] N. I., NI 5762R User Guide and Specifications, US: National Instruments, 2011.
    [41] N. I., NI 7350 User Manual and Specifications, US: National Instruments, 2006.
    [42] M. Robert, G. Molingou, K. Snook, J. Cannata, and K. K. Shung, “Fabrication of focused poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) copolymer 40–50 MHz ultrasound transducers on curved surfaces,” Journal of Applied Physics, vol. 96, no. 1, pp. 252, 2004.
    [43] C.-H. Chung, and Y.-C. Lee, “Fabrication of poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers and measurements of elastic constants of thin plates,” NDT & E International, vol. 43, no. 2, pp. 96-105, 2010.
    [44] S.-H. Kuo, “Excimer Laser and Miniature Acoustic Sensors: Fabrication, Evaluation and Applications,” Mechanical Engineering, National Cheng Kung University, Taiwan, 2001.

    下載圖示 校內:2016-09-05公開
    校外:2019-09-05公開
    QR CODE