| 研究生: |
蘇迺超 Su, Nai-Chao |
|---|---|
| 論文名稱: |
應用於系統面板結合高介電係數閘極之氧化物半導體薄膜電晶體及記憶體元件之研究 A Study on Oxide-Semiconductor-Based Thin-Film Transistors and Memories with High-k Gate Dielectrics for System-on-Panel Applications |
| 指導教授: |
王水進
Wang, Shui-Jinn 荊鳳德 Chin, Feng-Der |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 氧化鋅 、薄膜電晶體 、高介電係數 |
| 外文關鍵詞: | ZnO, thin film transistor, high-k |
| 相關次數: | 點閱:75 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來氧化物半導體的薄膜電晶體的大幅進展提供了取代以矽通道的薄膜電晶體的選擇。然而為了降低操作電壓與得到較大的驅動電流,有必要應用高介電係數的閘極介電層以增加閘極金屬電極與通道之間的耦合電容。在本篇論文中,我們先用高介電係數閘極介電層提升濺鍍法製作的「氧化鋅」與「氧化銦鎵鋅」薄膜電晶體的特性。接著,在薄膜電晶體良好的電性基礎之下,我們發展出一種應用氮化物捕陷層的非揮發性記憶體,此結果有機會取代傳統多晶矽通道的浮動閘極非揮發性記憶體。
在製作「氧化鋅」薄膜電晶體的方面,我們利用高介電係數閘極介電層「氧化鑭鉿」與「超薄氧化鋅」通道來改善氧化鋅薄膜電晶體的整體特性。因為氧化鋅具有在室溫下沈積結晶的特性,而此種隨機無秩序的結晶使得通道介面態位增加,會造成薄膜電晶體閘極漏電,而損害薄膜電晶體的整體特性。為了降低漏電,我們採取減小氧化鋅薄膜主動層的厚度的方法來改善,實驗結果顯示在厚度為6奈米的情況之下,氧化鋅呈現非晶相。如此一來,利用高介電係數閘極介電層氧化鑭鉿的氧化鋅氧化薄膜電晶體之電特性也隨之改善。改善後的氧化鑭鉿/氧化鋅薄膜電晶體具有臨限電壓0.28 V、次臨界擺幅0.26 V/dec、載子移動率3.5 cm2/V-s以及電流開關比1×106的特性。此外,我們亦應用另一高介電係數閘極介電層「氧化鈦鉿」製作氧化鋅薄膜電晶體,我們探討了這種高介電係數材料分別經過300-600oC的熱處理之後對元件特性的影響。由實驗結果顯示,高介電係數閘極介電層接受500oC之熱退火的薄膜電晶體,其特性最佳。
其次,在製作「氧化鎵銦鋅」薄膜電晶體的方面,我們製作出的氧化鑭鉿/氧化鎵銦鋅薄膜電晶體具有低臨限電壓0.22 V、高電流開關比5×107、優良移動率25 cm2/V-s、非常低的次臨界擺幅0.076 V/dec,並且能夠允許元件在2 V的電壓之下操作。此外,我們亦成功將氧化鑭鉿/氧化鎵銦鋅薄膜電晶體製作在聚亞醯胺基板上,此項成果展現出利用此種材料與結構實現軟性電子的可能性。
最後,在非揮發態記憶體方面,藉由雙穿遂層-雙阻障層-雙補陷層的「閘極電荷捕陷工程快閃記憶體」(CTEF),特性優於傳統的「金屬-氧化物-氮化物-氧化物-半導體」(MONOS)的元件,其展現出分別為10 V與-12 V的程式化與抹除電壓,分別為1 ms與100 us的快速的反應時間,並且在初始在記憶窗為1.6 V之下,經過104秒之後僅微幅減小到1.4 V,當外插時間延伸到十年後僅減小到1.2 V,這是目前文獻上的最佳結果。
綜合以上的結果,結合高介電係數與氧化物半導體的元件將有將有機會被利用在系統面板上。
Oxide-semiconductor-based thin-film transistors have advanced remarkably in recent years, providing an attractive alternative to silicon-based thin film transistors (TFTs). However, in order to operate these oxide TFTs at low bias voltage and high driving current, high-k gate dielectrics are needed to increase the capacitive coupling between the gate electrode and the channel active layer. In this thesis, firstly of all, we applied novel ternary high-k gate dielectric materials to enhance the performance of sputtered ZnO and InGaZnO thin-film transistors. In addition, based on the good TFT characteristics, we also made nitride-trapping nonvolatile memories (NVMs) that showed great prospect in replacement of the conventional poly-Si floating gate device.
In the aspect of ZnO TFTs, hafnium-lanthanum-oxide (HfLaO) and ultrathin ZnO were used to improve the overall electrical characteristics of ZnO TFTs. Because the property of ZnO inclined to form random polycrystalline phases, which results in high gate leakage even fabricated at room temperature, the amorphous ZnO is highly preferred in TFTs. We improved the electrical characteristics of HfLaO/ZnO TFTs by reducing the thickness of ZnO, which formed amorphous phase in 6-nm thickness in this experiment. The resulting HfLaO/ZnO TFTs displayed a threshold voltage (VT) of 0.28 V, a subthreshold swing (SS) of 0.26 V/dec, a mobility (uFE) of 3.5 cm2/V-s and a On/Off current ratio of 1×106. In addition, we also demonstrated the feasibility of producing a ZnO thin-film transistor using another high-k material titanium hafnium oxide (TiHfO) as the gate dielectric. The prepared samples were subjected to post-deposition annealing (PDA) in oxygen ambient at 300-600oC to evaluate the effect of temperature on the device characteristics, in which we acquired the best electrical characteristics after 500oC PDA.
Next, in the aspect of InGaZnO TFTs, the present HfLaO/InGaZnO have displayed remarkable characteristics, showing a low VT of only 0.22 V, a high IOn/IOff of 5×107, a good FE of 25 cm2/V-s, and an excellent SS of 76 mV/dec, permitting low power operation at 2 V. In addition, the HfLaO/InGaZnO transistor was also fabricated on the polyimide (PI) substrate to realize the future possibility in the application of flexible electronics.
Finally, in the aspect of nonvolatile memories, by using the double-tunneling, double-blocking and double-trapping layers, the charge-trapping-engineered flash (CTEF) instead of the conventional metal-oxide-nitride-oxide-semiconductor (MONOS) device showed a low program/erase (P/E) voltage of 10 V/-12 V and a fast 1 ms/100 us speed. The initial memory window was 1.6 V, decreasing only slightly to 1.4 V at 104 sec. The 1.2 V extrapolated 10-year window is among the best reported for an IGZO NVMs.
From the promising results mentioned above, the integration of the high-k gate dielectric with the oxide semiconductor active layers can reach the goal of system-on-panel (SoP) in the future.
Chapter 1
[1.1] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys. vol. 89, p. 5243–5275, May 2001.
[1.2] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, pp. 1785–1791, Feb. 2000.
[1.3] E. P. Gusev, V. Narayanan, M. M. Frank, "Advanced high-k dielectric stacks with poly Si and metal gates: Recent progress and current challenges," IBM J. Res. Dev. vol. 50, no. 4/5, pp. 387–410, Jul./Sep. 2006.
[1.4] B. H. Lee, S. C. Song, R. Choi, and P. Kirsch, "Metal electrode/high- dielectric gate-stack technology for power management," IEEE Tans. Electron Device, vol. 55, no. 1, pp. 8–20, Jan. 2008.
[1.5] K. J. Hubbard, D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res. vol. 11, p. 2757–2776, Nov. 1996.
[1.6] C. J. Forst, C. R. Ashman, K. Schwarz, P. E. Blöchl, “The interface between silicon and a high-κ oxide, Nature, vol. 427, pp. 53–56, Jan. 2004.
[1.7] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, A. Kikuchi, I. Kashiwagi, J. Taguchi, H. Yamamoto, J. Tonotani, Y. Kim, I. Ueda, A. Kuriyama, Y. Yoshihara, “Advanced gate dielectric materials for sub-100 nm CMOS”, in IEDM Tech. Dig. pp. 625–628, Dec. 2002.
[1.8] K. Mistry et al., "A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging," in IEDM Tech. Dig., pp. 247–250, Dec. 2007.
[1.9] K. C. Chiang, C. C. Huang, H. C. Pan, C. N. Hsiao, J. W. Lin, I. J. Hsieh, C. H. Cheng, C. P. Chou, A. Chin, H. L. Hwang, and S. P. McAlister, “Thermal leakage improvement by using a high-work-function Ni electrode in high-k TiHfO metal-insulator-metal capacitors,” J. Electrochem. Soc. vol. 154, pp. G54–G57, Mar. 2007.
[1.10] C. H. Cheng, K. C. Chiang, H. C. Pan, C. N. Hsiao, C. P. Chou, S. P. McAlister, and A. Chin, “Improved stress reliability of analog TiHfO metal-insulator-metal capacitors,” Jpn. J. Appl. Phys., vol. 46, no. 11, pp. 7300–7302, Nov. 2007.
[1.11] C. H. Cheng, H. C. Pan, C. C. Huang, C. P. Chou, C. N. Hsiao, J. Hu, M. Hwang, T. Arikado, S. P. McAlister, and A. Chin, “Improvement of the performance of TiHfO MIM capacitors by using a dual plasma treatment of the lower electrode,” IEEE Electron Device Lett., vol. 29, no. 10, pp. 1105–1107, Oct. 2008.
[1.12] Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen and C. M. Kwei, “Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å ,” IEEE Electron Device Lett., vol. 21, no. 7, pp. 341–343, Jul. 2000.
[1.13] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “Low sub-threshold swing HfLaO/pentacene organic thin film transistors,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 215–218, Mar. 2008.
[1.14] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “Small-subthreshold-swing and low-voltage flexible organic thin-film transistors which use HfLaO as the gate dielectric,” IEEE Electron Device Lett., vol. 30, no. 2, pp. 133–135, Feb. 2009.
[1.15] C. H. Wu, B. F. Hung, A. Chin, S. J. Wang, X. P. Wang, M.-F. Li, C. Zhu, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang, “High temperature stable [Ir3Si-TaN]/HfLaON CMOS with large work-function difference,” in IEDM Tech. Dig., pp. 617–620, Dec. 2006.
[1.16] C. F. Cheng, C. H. Wu, N. C. Su, S. J. Wang, S. P. McAlister and A. Chin, “Very low Vt [Ir-Hf]/HfLaO CMOS using novel self-aligned low temperature shallow junctions,” in IEDM Tech. Dig., pp. 333–336, Dec. 2007.
[1.17] C. F. Cheng, C. H. Wu, N. C. Su, S. J. Wang, S. P. McAlister and A. Chin, “HfLaON n-MOSFETs using a low work function HfSix gate,” IEEE Electron Device Lett., vol. 29, no.1, pp. 50–53, Jan. 2008
[1.18] S. B. Ogale, Thin films and heterostructures for oxide for oxide electronics, New York, NY: Springer, 2005.
[1.19] C. Jagadish and S. Pearton, Zinc oxide bulk, thin films and nanostructure, Oxford, UK: Elsevier, 2006.
[1.20] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke,M. A. Reshchikov, S. Dogan,V. Avrutin, S.-J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," J. Appl. Phys., vol. 98, pp. 041301-1–041301-103, Aug. 2005.
[1.21] A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor,” Rep. Prog. Phys., vol. 72, pp.126501-1–126501-29, Oct. 2009.
[1.22] H. Wang, K. P. Yan, J. Xie, M. Duan, “Fabrication of ZnO colloidal photonic crystal by spin-coating method, ” Mater. Sci. Semicond. Process, vol. 11, pp. 44–47, Apr. 2008.
[1.23] M. Berber , V. Bulto, R. Klis, H. Hahn, “Transparent nanocrystalline ZnO films prepared by spin coating,” Scripta Materialia, vol. 53, pp. 547–551, 2005.
[1.24] K. -S. Hwang, B. -An. Kang, J. -H. Jeong, Y. -S. Jeon, B. -H. Kim, “Spin coating-pyrolysis derived highly c-axis-oriented ZnO layers pre-fired at various temperatures,” Curr. Appl. Phys., vol. 7, pp. 421–425, May 2007.
[1.25] T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, N. Sakagami, “Hydrothermal growth of ZnO single crystals and their optical characterization,” J. Cryst. Growth, vol. 214–215, pp. 72–76, Jun. 2000.
[1.26] B. Wang, M. J. Callahanb, C. Xuc, L. O. Bouthilletteb, N. C. Gilesc, D. F. Blissb, “Hydrothermal growth and characterization of indium-doped-conducting ZnO crystals,” J. Cryst. Growth, vol. 304, pp. 73–79, Jun. 2007.
[1.27] S. Li, S. Zhou, H. Liu, Y. Hang, C. Xia, J. Xu, S. Gu, R. Zhang, “Low-temperature hydrothermal growth of oriented [0001] ZnO film,” Mater. Lett., vol. 61, pp. 30–33, Jan. 2007.
[1.28] W. -T. Chiou, W. -Y. Wu, J. -M. Ting, “Growth of single crystal ZnO nanowires using sputter deposition,” Diam. Relat. Mat., vol. 12, pp. 1841–1844, Oct./Nov. 2003.
[1.29] H. -Y. Tsai, “Characteristics of ZnO thin film deposited by ion beam sputter,” J. Mater. Process. Technol., vol. 192–193, pp. 55–59, Oct. 2007.
[1.30] V. V. Siva Kumar, F. Singh, A. Kumar, D. K. Avasthi, “Growth of ZnO nanocrystals in silica by rf co-sputter deposition and post-annealing,” Nucl. Instrum. Methods Phys. Res., Sect. B, vol. 244, pp. 91–94, Mar. 2006.
[1.31] Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe, “Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method,” J. Cryst. Growth, vol. 221, pp. 431–434, Dec. 2000.
[1.32] K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabea, B. P. Zhang, Y. Segawa, “High-quality ZnO films prepared on Si wafers by low-pressure MO-CVD,” Thin Solid Films, vol. 433, pp. 131–134, Jun. 2003.
[1.33] B. M. Ataev, V. V. Mamedov, A. K. Omaev, B. A. Magomedov, “Epitaxial ZnO films grown by RF-assisted low-temperature CVD method,” Mater. Sci. Semicond. Process, vol. 6, pp. 535–537, Oct./Dec. 2003.
[1.34] P. -Y. Lin, J. -R. Gong, P. –C. Li, T. –Y. Lin, D. -Y. Lyu, D. -Y. Lin, H. -J. Lin, T. -C. Li, K. -J. Chang, W. -J. Lin, “Optical and structural characteristics of ZnO films grown on (0001) sapphire substrates by ALD using DEZn and N2O,” J. Cryst. Growth, vol. 310, no. 12, pp. 3024–3028, Jun. 2008.
[1.35] U. Malm, J. Malmstrfm, C. Platzer-Bjfrkman, L. Stolt, “Determination of dominant recombination paths in Cu(In,Ga)Se2 thin-film solar cells with ALD–ZnO buffer layers,” Thin Solid Films, vol. 480–481, pp. 208–212, Jun. 2005.
[1.36] C. -S. Ku, J. -M. Huang, C. -M. Lin, H. -Y. Lee, “Fabrication of epitaxial ZnO films by atomic-layer deposition with interrupted flow,” Thin Solid Films, vol. 518, pp. 1373–1376, Dec. 2009.
[1.37] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," J. Non-Cryst. Solids, vol. 352, pp. 851–858, Jun. 2006.
[1.38] T. Kamiya, K. Nomura, and H. Hosono, “Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronic structure, electron transport, defects and doping,” J. Disp. Technol., vol. 5, no. 7, pp. 273–288, Jul. 2009.
[1.39] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, "Amorphous oxide semiconductors for high-performance flexible thin-film transistors," Jpn. J. Appl. Phys., vol. 45, no. 5B, pp. 4303–4308, May 2006.
[1.40] P. K. Weimer, “ The TFT-A new thin-film transistors,” Proc. IEEE, vol.50, pp. 1462–1469, 1963.
[1.41] F. V. Shallcross, “Cadmium selenide thin-film transistors,” Proc. IEEE, vol. 51, pp. 851–851, 1963.
[1.42] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett., vol. 82, pp. 733–735, Feb. 2003.
[1.43] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, ” Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, no. 3, pp.1624–1630, Feb. 2003.
[1.44] E. Fortunato, A. Pimentel, L. Pereira, A. Goncalves, G. Lavareda, H. Aguas, I. Ferreira, C. N. Carvalho, R. Martins, ”High field-effect mobility zinc oxide thin film transistors produced at room temperature,” J Non-Cryst Solids. vol. 338–340, pp. 806–809, Jun. 2004.
[1.45] E. C. Fortunato, P. M. Barquinha, A. C. Pimentel, A. M. Goncalves, A. J. Marques, R. F. Martins, L. M. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature.” Appl. Phys Lett., vol. 85, pp. 2541–2543, Sep. 2004.
[1.46] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269–1272, May, 2003.
[1.47] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductor,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004.
[1.48] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phy. Lett., vol. 89, p. 112123-1–112123-3, Sep. 2006.
[1.49] J. H. Na, M. Kitamura, and Y. Arakawa, "High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes," Appl. Phys Lett., vol. 93, pp. 063501-1–063501-3, Aug. 2008.
[1.50] A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, “Room temperature pulsed laser deposited indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys Lett. vol. 90, pp. 123512-1–123512-3, Mar. 2007.
[1.51] J. Y. Kwon, K. S. Son, Ji Sim Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, “Bottom-gate gallium indium zinc oxide thin film transistor array for high-resolution AMOLED display,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1309–1311, Dec. 2008.
[1.52] T. Urabe, T. Sasaoka, K. Tatsuki, and J. Takaki, “Invited Paper: Technological Evolution for Large Screen Size Active Matrix OLED Display,” SID Int. Symp. Dig. Tech. Pap., pp. 161–164, May 2007.
[1.53] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” J. Bell Syst. Tech, vol. 46, no.4, pp. 1288–1295, 1967.
[1.54] M. H. White, D. A. Adams, and J. Bu, “On the Go with SONOS”, IEEE Circuits Devices Mag., vol. 16, pp. 22–31, Jul. 2000.
[1.55] C. H. Lee, K. I. Choi, M. K. Cho, Y. H. Song, K. C. Park, and K. Kim, “A novel SONOS structure of SiO2/SiN/Al2O3 with TaN metal gate for multi-Giga bit Flash memories,” in IEDM Tech. Dig., pp. 613–616, Dec. 2003.
[1.56] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo, T. H. Ng, and B. J. Cho,“ High-κ HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation,” in IEDM Tech. Dig., pp. 889–892, Dec. 2004.
[1.57] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories–Part I: Device design and fabrication,” IEEE Trans. Electron Devices, vol.49, no.9, pp. 1606–1613, Sep. 2002.
[1.58] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories–Part II: Electrical characteristics,” IEEE Trans. Electron Devices, vol.49, no.9, pp. 1614–1622, Sep. 2002.
[1.59] J. J. Lee, X. Wang, W. Bai, N. Lu, J. Liu, and D. L. Kwong, “Theoretical and experimental investigation of Si nanocrystal memory device with HfO2 high-k tunneling dielectric,” in VLSI Symp. Tech. Dig., pp. 33–34, Jun. 2003.
[1.60] Y. -H. Lin, C.-H. Chien, C.-T. Lin, C.-Y. Chang, and T.-F. Lei, “High performance nonvolatile HfO2 nanocrystal memory”, IEEE Electron Device Lett., vol. 26, no. 3, pp. 154–156, Mar. 2005.
[1.61] A. Nakajima, T. Futatsugi, K. Kosemura, T. Fukano, and N. Yokoyama, "Room temperature operation of Si single-electron memory with self-aligned floating dot gate," Appl. Phys. Lett. vol. 70, pp. 1742–1744, Mar. 1997.
[1.62] K. K. Yadavalli, A. O. Orlov, G. L. Snider, and A. N. Korotkov, “Single electron memory devices: Toward background charge insensitive operation” J. Vac. Sci. Technol. B, vol. 21, no. 6, pp. 2860–2864, Nov./Dec. 2003.
[1.63] A. Sazonov, D. Striakhilev, C. -H Lee, and A. Nathan, “Low-temperature material and thin film transistor for flexible electronics,” Proc. IEEE, vol. 93, no.8, pp. 1420–1428, Aug. 2005.
[1.64] V. Subramanian, J. M. J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, S. K. Volkman,”Progress toward development of all-printed RFID: material, process, and devices,” Proc. IEEE, vol. 93, no.8, pp. 1330–1338, Aug. 2005.
[1.65] S. H. Kim, J. H. Cheon, E. B. Kim, J. H. Bae, J. H. Hur, J. Jang, "High-performance hydrogenated amorphous silicon TFT on flexible metal foil with polyimide planarization," J. Non-Cryst. Solids, vol. 354, 2529–2533, May 2008.
[1.66] J. K. Jeong, D. U. Jin, H. S. Shin, H. J. Lee, M. Kim, T. K. Ahn, J. Lee, Y. G. Mo, and H. K. Chung, "Flexible full-color AMOLED on ultrathin metal foil," IEEE Electron Device Lett. vol. 28, no. 5, pp. 389–391, May 2007.
[1.67] J. H. Cheon, J. H. Bae, J. Jang, "Mechanical stability of poly-Si TFT on metal foil," Solid-State Electron., vol. 52, pp. 473–477, Mar. 2008.
[1.68] H. S. Shin, J. B. Koo, J. K. Jeong, Y. G. Mo, H. K. Chung, J. H. Cheon, J. H. Choi, K. M. Kim, J. H. Hur, S. H. Park, S. K. Kim and J. Jang, “4.1 inch top-emission AMOLED on flexible metal foil,” SID Int. Symp. Dig. Tech. Pap., vol. 36, p.1642–1645, May 2005.
[1.69] A. Chwang, R. Hewitt, K. Urbanik, J. Silvernail, K. Rajan, M. Hack, J.J. Brown, J. Lu, C. Shih, J. Ho, R.A. Street, T. Ramos, L. Moro, N. Rutherford, K. Tognoni, B. Anderson and D. Huffman, “Full color 100 dpi AMOLED displays on flexible stainless steel substrates,” SID Int. Symp. Dig. Tech. Pap. vol. 37, pp. 1858–1861, Jun. 2006.
[1.70] Y. He, R. Hattori, and J. Kanicki, "Improve a-Si:H TFT pixel electrode circuits for active-matrix organic light emitting displays, IEEE Tans. Electron Device, vol. 48, no. 7, pp. 1322–1325, Jul. 2001.
[1.71] J. A. Nichols, T. N. Jackson, M. H. Lu and M. Hack,“a-Si:H TFT Active-Matrix Phosphorescent OLED Pixel”, SID Int. Symp. Dig. Tech. Pap. vol. 33, pp. 1368–1371, May 2002.
[1.72] J.-H. Lee, J.-H. Kim and M.-K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED”, IEEE Electron Device Lett., vol. 26, no. 12, pp897–899, Dec. 2005.
[1.73] M. Ito, M. Kon, C. Miyazaki, N. Ikeda, M. Ishizaki, R. Matsubara, Y. Ugajin, and, N. Sekine, “Amorphous oxide TFT and their applications in electrophoretic,” Phys. Status Solidi A, vol. 205, no. 8, pp. 1885–1894, Aug. 2008.
[1.74] J. -S. Park, T. -W. Kim, D. Stryakhilev, J. -S. Lee, S. -G. An, Y. -S. Pyo, D. -Bum, Lee, Y. G. Mo, D. -U. Jin, and Ho K. Chung, “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phy. Lett., vol. 95, pp. 013503-1–013503-3, Jul. 2009.
[1.75] W. Lim, E. A. Douglas, S. -H. Kim, D. P. Norton, S. J. Pearton, F. Ren, H. Shen, and W. H. Chang, “Low-temperature-fabricated InGaZnO4 thin film transistors on polyimide clean-room tape,” Appl. Phy. Lett., vol. 93, p. 252103-1–252103-3, Dec. 2008.
[1.76] D. H. Kim, N. G. Cho, S. H. Han, H. -G. Kim, and I. -D. Kim, “Thickness dependent of gate dielectric and active semiconductor on InGaZnO4 TFT fabricated on plastic substrates,” Electrochem. Solid-State Lett., vol. 11, no. 12, pp. H317–H319, Dec. 2008.
[1.77] W. Lim, J. H. Jang, S. -H. Kim, D. P. Norton, V. Craciun, S. J. Pearton, F. Ren, and H. Shen, “High performance indium gallium zinc oxide thin film transistor fabricated on polyethylene terephthalate substrate,” Appl. Phy. Lett., vol. 93, pp. 082102-1–082102-3, Aug. 2009.
[1.78] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516, no. 7, pp. 1516–1522, Feb. 2008.
[1.79] E. Fortunato, N. Correia, P. Barquinha, L. Pereira, G. Goncalves, and R. Martins, “High-performance flexible hybrid field-effect transistors based on cellulose fiber paper,” IEEE Electron Device Lett., vol. 29, no. 9, pp. 988–990, Sep. 2008.
[1.80] H. N. Lee, J. Kyung, M. C. Sung, D. Y. Kim, S. K. Kang, S. J. Kim, C. N. Kim, H. G. Kim, and S. T. Kim, " Oxide TFT with multilayer gate insulator for backplane of AMOLED device," J. Soc. Inf. Disp., vol.16, p. 265–272, 2008.
[1.81] [Online]. Available: http://www.green-technology.org/what.htm
[1.82] [Online]. Available: http://www.climatesaverscomputing.org/
Chapter 2
[2.1] E. Fortunato, A. Goncalves, A. Pimentel, P. Barquinha, G. Goncalves, L. Pereira, I. Ferreira, R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys. A, no. 96, pp. 197–205, Jan. 2009.
[2.2] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett., vol. 82, pp. 733–735, Feb. 2003.
[2.3] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, ” Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, no. 3, pp.1624–1630, Feb. 2003.
[2.4] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins, “Fully transparent ZnO thin-film transistor produced at room temperature,” Adv. Mater., vol. 17, no. 5, pp. 590–594, Mar. 2005.
[2.5] E. Fortunato, A. Pimentel, L. Pereira, A. Goncalves, G. Lavareda, H. Aguas, I. Ferreira, C. N. Carvalho, R. Martins, “High field-effect mobility zinc oxide thin film transistors produced at room temperature,” J. Non-Cryst. Solids, vol. 338–340, pp.806–809, May 2004.
[2.6] E. M. C. Fortunato, P. M. C.Barquinha, A. C. M. B. G. Pimentel, A. M. F. Goncalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, ” Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature ,” Appl. Phys. Lett., vol. 85, no. 13, pp. 2541–2543, Sep. 2004.
[2.7] R. Navamathavan, E. -J. Yang, J. -H. Lim, D. -K. Hwang, J. -Y. Oh, J. -H. Yang, J. H. Jang, and S. -J. Park, “Effects of electrical bias stress on the performance of ZnO-based TFTs fabricated by RF magnetron sputtering ,” J. Electrochem. Soc., vol. 153, pp. G385–G388, Mar. 2006.
[2.8] K. Lee, J. H. Kim, S. Im, C. S. Kim, and H. K. Baik, “Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high-k oxide double-layer dielectric,“ Appl. Phys. Let., vol. 89, pp.133507-1–133507-3, Sep. 2006.
[2.9] M. S. Oh, D. K. Hwang, K. Lee, S. Im, and S. Yi, Appl. Phys. Lett., ” Low voltage complementary thin-film transistor inverters with pentacene-ZnO hybrid channels on AlOx dielectric,” vol. 90, pp.173511-1–173511-3, Apr. 2007.
[2.10] S. -M. Yoon, S. -H. K. Park, C. -S. Hwang, H. Y. Chu, and K. I. Cho, Electrochem. Solid-State Lett., “Fabrication of oxide TFTs with Al2O3 ZnO gate stacks patterned using a dry etching method,” vol. 11, pp. J15–J18, Feb. 2008.
[2.11] S. H. Cha, M. S. Oh, K. H. Lee, S. Im, B. H. Lee, and M. M. Sung, ” Electrically stable low voltage ZnO transistors with organic_inorganic nanohybrid dielectrics,” Appl. Phys. Lett., vol. 92, pp. 023506-1–023506-3, Jan. 2008.
[2.12] S. Chang, Y. -W Song, S. Lee, S. Y. Lee, and B. -K. Ju, “Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3/HfO2/Al2O3 structure ,” Appl. Phys. Lett., vol. 92, pp. 192104-1–192104-3, May 2008.
[2.13] J. H. Kim, B. D. Ahn, C. H. Lee, K. A. Jeon, H. S. Kang, and S. Y. Lee, ” Characteristics of transparent ZnO based thin film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes,” Thin Solid Films, vol. 516, no. 7, pp.1529–1532, Feb. 2008.
[2.14] H. J. H. Chen, and B. B. L Yeh, “Optimization of the Fabrication Process for ZnO Thin-Film Transistors with HfO2 Gate Dielectrics,” Jpn. J. Appl. Phys., vol. 48, pp. 031103-1–031103-3, Mar. 2009.
[2.15] V. Subramanian, J. M. J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, S. K. Volkman, “Toward printed low-cost RFID tags: Device, materials and circuit technologies,” Proc. IEEE, vol .93, no. 7, pp.1330–1338, Jul. 2005.
[2.16] C. H. Wu, B. F. Hung, A. Chin, S. J. Wang, X. P. Wang, M.-F. Li, C. Zhu, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang, ”High Temperature Stable [Ir3Si-TaN]/HfLaON CMOS with Large Work-Function Difference,“ in IEDM Tech. Dig., pp. 617–620, Dec. 2006.
[2.17] C. F. Cheng, C. H. Wu, N. C. Su, S. J. Wang, S. P. McAlister and Albert Chin, “ Very Low Vt [Ir-Hf]-HfLaO CMOS Using Novel Self-Aligned Low Temperature Shallow Junctions,“ in IEDM Tech. Dig., pp. 333–336, Dec. 2007.
[2.18] X. P. Wang, H. Y. Yu, M.-F. Li, C. X. Zhu, S. Biesemans, A. Chin, Y. Y. Sun, Y. P. Feng, A. Lim, Y.-C. Yeo, W. Y. Loh, G. Q. Lo, and D.-L. Kwong,” Wide Vfb and Vth tunability for metal-gated MOS devices with HfLaO gate dielectrics,” IEEE Electron Device Lett., vol. 28, no. 4, pp.258–260, Apr. 2007.
[2.19] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “Low subthreshold swing HfLaO pentacene organic thin-film transistors,” IEEE Electron Device Lett., vol. 29, no. 3, pp.215–217, Mar. 2008.
[2.20] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “Small-subthreshold-swing and low-voltage flexible organic thin-film transistors which use HfLaO as the gate dielectric,” IEEE Electron Device Lett., vol. 30, no. 2, pp.133–135, Feb. 2009.
[2.21] Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen and C. M. Kwei, “Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å ,” IEEE Electron Device Lett., vol. 21, no. 7, pp. 341–343, Jul. 2000.
[2.22] L. Pereira, P. Barquinha, E. Fortunato, R. Martins, D. Kang, C. J. Kim, H. Lim, I. Song, Y. Park, “Effect of thickness of ZnO active layer on ZnO-TFT's characteristics ,” Thin Solid Films, vol. 516, no. 16, pp.5597–5601, Jun. 2008.
[2.23] H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed., New York, NY: Wiley, 1974.
[2.24] D. K. Schroder, Semiconductor Material and Device Characterization, New York, NY: Wiley-Interscience/IEEE, 2006.
Chapter 3
[3.1] E. Fortunato, A. Goncalves, A. Pimentel, P. Barquinha, G. Goncalves, L. Pereira, I. Ferreira, R. Martins, “Zinc oxide, a multifunctional material: from material to device applications,” Appl. Phys. A, no. 96, pp. 197–205, Jan. 2009.
[3.2] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors,” Thin Solid Films, vol. 487, no. 1–2, pp. 205–211, Sep. 2005.
[3.3] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, ” Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, no. 3, pp.1624–1630, Feb. 2003.
[3.4] C. C. Liu, Y. S. Chen, and J. J. Huang, “High-performance ZnO thin-film transistors fabricated at low temperature on glass substrates,” Electron. Lett. vol. 42, no. 43, pp.824–825, Jul. 2006.
[3.5] P. F. Carcia, R. S. Mclean, M. H. Reilly, and G. Nunes, Jr., “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Appl. Phys. Lett. vol. 82, no.7, pp.1117–1119, Feb. 2003.
[3.6] J. Jo, O. Seo, E. Jeong, H. Seo, B. Lee, and Y. I. Choi, “Effect of hydrogen in zinc oxide thin-film transistor grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 46, no. 4B, pp. 2493–2495, Apr. 2007.
[3.7] B. Y. Oh, M. C. Jeong, M. H. Ham, and J. M. Myoung, “Effects of the channel thickness on the structural and electrical characteristics of room-temperature fabricated ZnO thin-film transistors,” Semicond. Sci. Technol. vol. 22, pp. 608–612. May 2007.
[3.8] J. Jo, O. Seo, H. Choi, and B. Lee, “Enhancement-Mode ZnO Thin-Film Transistor Grown by Metalorganic Chemical Vapor Deposition,” Appl. Phys. Express, vol. 1 pp. 041202-1–041202-3, Apr. 2008.
[3.9] R. Navamathavan, E. -J. Yang, J. -H. Lim, D. -K. Hwang, J. -Y. Oh, J. -H. Yang, J. H. Jang, and S. -J. Park, “Effects of electrical bias stress on the performance of ZnO-based TFTs fabricated by RF magnetron sputtering ,” J. Electrochem. Soc., vol. 153, pp. G385–G388, Mar. 2006.
[3.10] K. Remashan, D. K. Hwang, S. J. Park, and J. H. Jang, “Effect of Rapid Thermal Annealing on the Electrical Characteristics of ZnO Thin-Film Transistors,” Jpn. J. Appl. Phys., vol. 47, no. 4, pp. 2848–2853, Apr. 2008.
[3.11] H. H. Hsieh, and C. C. Wu, “Amorphous ZnO Transparent Thin-Film Transistors Fabricated by Fully Lithographic and Etching Processes,” Appl. Phys. Lett., vol. 91 pp. 013502-1–013502-3, Jul. 2007.
[3.12] M. S. Oh, D. K. Hwang, K. Lee, S. Im, and S. Yi, , ” Low voltage complementary thin-film transistor inverters with pentacene-ZnO hybrid channels on AlOx dielectric,” Appl. Phys. Lett., vol. 90, pp.173511-1–173511-3, Apr. 2007.
[3.13] S. H. K. Park, C. S. Hwang, H. Y. Jeong, H. Y. Chu, and K. I. Cho, “Transparent ZnO-TFT arrays fabricated by atomic layer deposition,” Electrochem. Solid-State Lett. vol. 11, pp. H10–H14, Jan. 2008.
[3.14] J. Sun, D. A. Mourey, D. Zhao, S. K. Park, S. F. Nelson, D. H. Levy, D. Freeman, P. Cowdery-Corvan, L. Tutt, and T. N. Jackson, “ZnO thin-film transistor ring oscillators with 31-ns propagation delay,” IEEE Electron Device Lett., vol. 29, no. 7, pp. 721–723, Jul. 2008.
[3.15] K. Lee, J. H. Kim, S. Im, C. S. Kim, and H. K. Baik, “Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high- oxide double-layer dielectric,“ Appl. Phys. Let., vol. 89, pp. 133507-1–133507-3, Sep. 2006.
[3.16] S. H. Cha, M. S. Oh, K. H. Lee, S. Im, B. H. Lee, and M. M. Sung, ” Electrically stable low voltage ZnO transistors with organic/inorganic nanohybrid dielectrics,” Appl. Phys. Lett., vol. 92, pp. 023506-1–023506-3, Jan. 2008.
[3.17] K. Lee, K. Kim, K. H. Lee, G. Lee, M. S. Oh, J. -M. Choi, S. Im, S. Jang, and E. Kim, “ZnO-based low voltage inverter with low-k/high-k double polymer dielectric laye,“ Appl. Phys. Lett., vol. 93, pp.193514-1–193514-3, Nov. 2008.
[3.18] H. J. H. Chen, and B. B. L Yeh, “Optimization of the fabrication process for ZnO thin-film transistors with HfO2 gate dielectrics,” Jpn. J. Appl. Phys., vol. 48, pp. 031103-1–031103-5, May 2009.
[3.19] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, pp. 5243–5275, May 2001.
[3.20] K. C. Chiang, C. C. Huang, A. Chin, W. J. Chen, H. L. Kao, M. Hong,and J. Kwo, “High performance micro-crystallized TaN/SrTiO3/TaN capacitors for analog and RF applications,” in VLSI Symp. Tech. Dig., pp. 102–103, Jun. 2006.
[3.21] K. C. Chiang, A. Chin, C. H. Lai, W. J. Chen, C. F. Cheng, B. F. Hung, and C. C. Liao, “Very high- and high density TiTaO MIM capacitors for analog and RF applications,” in VLSI Symp. Tech. Dig., pp. 62–63, Jun. 2005.
[3.22] K. C. Chiang, C. C. Huang, H. C. Pan, C. N. Hsiao, J. W. Lin, I. J. Hsieh, C. H. Cheng, C. P. Chou, A. Chin, H. L. Hwang, and S. P. McAlister, “Thermal Leakage Improvement by Using a High-Work-Function Ni Electrode in High-k TiHfO Metal-insulator-Metal Capacitors,” J. Electrochem. Soc., vol. 154, pp. G54–G57, Mar. 2007.
[3.23] C. H. Cheng, K. C. Chiang, H. C. Pan, C. N. Hsiao, C. P. Chou, S. P. McAlister, and A. Chin, “Improved Stress Reliability of Analog TiHfO Metal-Insulator-Metal Capacitors,” Jpn. J. Appl. Phys., vol. 46, no. 11, pp. 7300–7302, Nov. 2007.
[3.24] C. H. Cheng, H. C. Pan, C. C. Huang, C. P. Chou, C. N. Hsiao, J. Hu, M. Hwang, T. Arikado, S. P. McAlister, and A. Chin, “Improvement of the performance of TiHfO MIM capacitors by using a dual plasma treatment of the lower electrode,” IEEE Electron Device Lett., vol. 29, no. 10, pp. 1105–1107, Oct. 2008.
[3.25] Y. Kuo, Thin Film Transistors–Materials and Processes, Norwell, NA: Kluwer Academic, 2004, vol. 1, chap. 2.
[3.26] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge, UK: Cambridge University Press, 1998, chap. 3.
Chapter 4
[4.1] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269–1272, May 2003.
[4.2] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductor,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004.
[4.3] J. Y. Kwon, K. S. Son, Ji Sim Jung, T. S. Kim, M. K. Ryu, K. B. Park, B. W. Yoo, J. W. Kim, Y. G. Lee, K. C. Park, S. Y. Lee, and J. M. Kim, “Bottom-gate gallium indium zinc oxide thin film transistor array for high-resolution AMOLED display,” IEEE Electron Device Lett., vol. 29, no. 12, pp. 1309–1311, Dec. 2008.
[4.4] J. K. Jeong, Y.-G. Mo, H. D. Kim, and H. K. Chung, “The current status and issue of oxide TFT for large-size AMOLED applications (invited),” in IEEE 21st Annual Meeting of the LEOS. Dig., pp. 63–64, Nov. 2008.
[4.5] P. Barquinha, L. Pereira, G. Goncalves, R. Martins, and E. Fortunato, “Toward high-performance amorphous GIZO TFTs,” J. Electrochem. Soc., vol. 156, pp. H161–H168, Mar. 2009.
[4.6] T. Kawamura, H. Uchiyama, S. Saito, H. Wakana, T. Mine, M, Hatano, K. Torii, and T. Onai, “1.5-V operating fully-depleted amorphous oxide thin film transistors achieved by 63-mV/dec subshreshold slope,” in IEDM Tech. Dig., pp. 77–80, Dec. 2008.
[4.7] A. Suresh, P. Wellenius, and J. F. Muth, “High performance transparent thin film transistors based on indium gallium zinc oxide as the channel material,” in IEDM Tech. Dig., pp.587–590, Dec. 2007.
[4.8] S. I. Kim, C. J. Kim, J. C. Park, I. Song, S. W. Kim, H. Yin, E. Lee, J. C. Lee, and Y. Park, “High performance oxide thin film transistor with double active layers ,” in IEDM Tech. Dig., pp. 73–76, Dec. 2008.
[4.9] S. I. Kim, C. J. Kim, J. C. Park, I. Song, D. H. Kang, H. Lim, S. W. Kim, E. Lee, J. C. Lee, and Y. Park, “New approach for passivation of Ga2O3-In2O3-ZnO thin film transistors ,” in IEDM Tech. Dig., pp. 583–586, Dec. 2007.
[4.10] C. J. Kim, D. Kang, I. Song, J. C. Park, H. Lim, S. Kim, E. Lee, R. Chung, J.C. Lee, and Y. Park, “Highly stable Ga2O3-In2O3-ZnO TFT for active-matrix organic light-emitting-diode display application,” in IEDM Tech. Dig., pp. 307–310, Dec. 2006.
[4.11] P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante, and E. Fortunato, “Gallium-indium-zinc-oxide-based thin-film transistors: influence of the source/drain material,” IEEE Trans. Electron Devices, vol. 55, no. 4, pp. 954–960, Apr. 2008.
[4.12] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. -S Park, J. K. Jeong, Y. -G Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Appl. Phy. Lett., vol. 90, pp. 212114-1–212114-3, May 2007.
[4.13] J. -S. Park, J. K. Jeong, Y. -G Mo, and S. Kim, “Impact of high-k TiOx dielectric on device performance of indium-gallium-zinc oxide transistors,” Appl. Phy. Lett., vol. 94, pp. 042105-1–042105-3, Jan. 2009.
[4.14] J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, “High performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator,” Appl. Phy. Lett., vol. 93, pp. 242111-1–242111-3, Dec. 2008.
[4.15] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phy. Lett., vol. 89, pp. 112123-1–112123-3, Sep. 2006.
[4.16] B. F. Hung, K. C. Chiang, C. C. Huang, A. Chin, and S. P. McAlister, “High- performance poly-silicon TFTs incorporating LaAlO3 as the gate dielectric,” IEEE Electron Device Lett., vol. 26, no. 6, pp. 384–386, Jun. 2005.
[4.17] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “Low sub-threshold swing HfLaO/pentacene organic thin film transistors,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 215–218, Mar. 2008.
[4.18] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “Small-subthreshold-swing and low-voltage flexible organic thin-film transistors which use HfLaO as the gate dielectric,” IEEE Electron Device Lett., vol. 30, no. 2, pp. 133–135, Feb. 2009.
[4.19] C. H. Wu, B. F. Hung, A. Chin, S. J. Wang, X. P. Wang, M.-F. Li, C. Zhu, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang, “High temperature stable [Ir3Si-TaN]/HfLaON CMOS with large work-function difference,” in IEDM Tech. Dig., pp. 617–620, Dec. 2006.
[4.20] C. F. Cheng, C. H. Wu, N. C. Su, S. J. Wang, S. P. McAlister and A. Chin, “Very low Vt [Ir-Hf]/HfLaO CMOS using novel self-aligned low temperature shallow junctions,” in IEDM Tech. Dig., pp. 333–336, Dec. 2007.
[4.21] X. P. Wang, H. Y. Yu, M.-F. Li, C. X. Zhu, S. Biesemans, A. Chin, Y. Y. Sun, Y. P. Feng, A. Lim, Y.-C. Yeo, W. Y. Loh, G. Q. Lo, and D.-L. Kwong, “Wide Vfb and Vth tunability for metal-gated MOS devices with HfLaO gate dielectrics,” IEEE Electron Device Lett., vol. 28, pp. 258–260, Apr. 2007.
[4.22] Y. H. Wu, M. Y. Yang, A. Chin, and W. J. Chen, “Electrical characteristics of high quality La2O3 dielectric with equivalent oxide thickness of 5Å,” IEEE Electron Device Lett., vol. 21, pp. 341–343, July 2000.
[4.23] C. H. Cheng, H. C. Pan, C. N. Hsiao, C. P. Chou, S. P. McAlister, and A. Chin, “Improved high-temperature leakage in high density MIM capacitors by using a TiLaO dielectric and an Ir electrode,” IEEE Electron Device Lett., vol. 28, no.12, pp. 1095–1097, Dec. 2007.
[4.24] L. Pereira, P. Barquinha, E. Fortunato, R. Martins, D. Kang, C. J. Kim, H. Lim, I. Song, and Y. Park, “High dielectrics for low temperature electronics,” Thin Solid Films, vol. 516, no. 7, pp. 1544–1548, Feb. 2008.
Chapter 5
[5.1] Sazonov, D. Striakhilev, C. -H Lee, and A. Nathan, “Low-temperature material and thin film transistor for flexible electronics,” Proc. IEEE, vol. 93, no.8, pp. 1420–1428, Aug. 2005.
[5.2] V. Subramanian, J. M. J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, S. K. Volkman,”Progress toward development of all-printed RFID: material, process, and devices,” Proc. IEEE, vol. 93, no.8, pp. 1330–1338, Aug. 2005.
[5.3] K. Long, A. Z. Kattamis, I. -C, Cheng, H. Gleskova, S. Wagner, and J. C. Sturn, “Stability of amorphous-silicon TFTs deposited on clear plastic substrates at 250oC to 280oC,” IEEE Electron Device Lett.,vol. 27, no. 2, pp. 111–113, Feb. 2006.
[5.4] Z. Kattamis, K. H. Cherenack, B. Hekmatshoar, I. -C. Cheng, H. Gleskova, J. C. Sturn, and S. Wagner, “Effect of SiNx gate dielectric deposition power and temperature on a-Si:H TFT stability,” IEEE Electron Device Lett.,vol. 28, no. 7, pp. 606–608, Jul. 2007.
[5.5] T. Shimoda and S. Inoue, “Surface free technology by laser annealing (SUFTLA),” in IEDM Tech. Dig., pp. 289–292. Dec. 1999.
[5.6] K. Takechi, T. Eguchi, H. Kanoh, T. Ito, and S. Otsuki, ”High-rate glass etching process for transferring polycrystalline silicon thin-film transistor to flexible substrates,” IEEE Trans. Electron Devices, vol. 18, no. 3, pp. 384–388, Aug. 2005.
[5.7] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, pp. 1269–1272, May, 2003.
[5.8] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductor,” Nature, vol. 432, no. 7016, pp. 488–492, Nov. 2004.
[5.9] P. Barquinha, L. Pereira, G. Goncalves, R. Martins, and E. Fortunato, “Toward high-performance amorphous GIZO TFTs,” J. Electrochem. Soc., vol. 156, pp. H161–H168, Mar. 2009.
[5.10] H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phy. Lett., vol. 89, p. 112123-1–112123-3, Sep. 2006.
[5.11] M. Ito, M. Kon, C. Miyazaki, N. Ikeda, M. Ishizaki, R. Matsubara, Y. Ugajin, and, N. Sekine, “Amorphous oxide TFT and their applications in electrophoretic,” Phys. Status Solidi A, vol. 205, no. 8, pp. 1885-1894, Aug. 2008.
[5.12] J. -S. Park, T. -W. Kim, D. Stryakhilev, J. -S. Lee, S. -G. An, Y. -S. Pyo, D. -Bum, Lee, Y. G. Mo, D. -U. Jin, and Ho K. Chung, “Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors,” Appl. Phy. Lett., vol. 95, pp. 013503-1–013503-3, Jul. 2009.
[5.13] W. Lim, E. A. Douglas, S. -H. Kim, D. P. Norton, S. J. Pearton, F. Ren, H. Shen, and W. H. Chang, “Low-temperature-fabricated InGaZnO4 thin film transistors on polyimide clean-room tape,” Appl. Phy. Lett., vol. 93, pp. 252103-1–252103-3, Dec. 2008.
[5.14] D. H. Kim, N. G. Cho, S. H. Han, H. -G. Kim, and I. -D. Kim, “Thickness dependent of gate dielectric and active semiconductor on InGaZnO4 TFT fabricated on plastic substrates,” Electrochem. Solid-State Lett., vol. 11, no. 12, pp. H317–H319, Dec. 2008.
[5.15] W. Lim, J. H. Jang, S. -H. Kim, D. P. Norton, V. Craciun, S. J. Pearton, F. Ren, and H. Shen, “High performance indium gallium zinc oxide thin film transistor fabricated on polyethylene terephthalate substrate,” Appl. Phy. Lett., vol. 93, pp. 082102-1–082102-3, Aug. 2009.
[5.16] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Amorphous oxide channel TFTs,” Thin Solid Films, vol. 516, no. 7, pp. 1516–1522, Feb. 2008.
[5.17] E. Fortunato, N. Correia, P. Barquinha, L. Pereira, G. Goncalves, and R. Martins, “High-performance flexible hybrid field-effect transistors based on cellulose fiber paper,” IEEE Electron Device Lett., vol. 29, no. 9, pp. 988–990, Sep. 2008.
[5.18] M. -F. Li, X. P. Wang, H. Y. Yu, C. X. Zhu, A.Chin, A. Y. Du, J. Shao, W. Lu, X. C, Shen, P. Liu, S. Hung, P. Lo, and D. K. Kwong, “A Novel High-k Gate Dielectric HfLaO for Next Generation CMOS Technology,” Proc. ICSICT, pp. 372–375, Oct. 2006.
[5.19] H. Wu, B. F. Hung, A. Chin, S. J. Wang, X. P. Wang, M.-F. Li, C. Zhu, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang, “High temperature stable [Ir3Si-TaN]/HfLaON CMOS with large work-function difference,” in IEDM Tech. Dig., pp. 617–620, Dec. 2006.
[5.20] C. F. Cheng, C. H. Wu, N. C. Su, S. J. Wang, S. P. McAlister and A. Chin, “Very low Vt [Ir-Hf]/HfLaO CMOS using novel self-aligned low temperature shallow junctions,” in IEDM Tech. Dig., pp. 333–336, Dec. 2007.
[5.21] X. P. Wang, H. Y. Yu, M.-F. Li, C. X. Zhu, S. Biesemans, A. Chin, Y. Y. Sun, Y. P. Feng, A. Lim, Y.-C. Yeo, W. Y. Loh, G. Q. Lo, and D.-L. Kwong, “Wide Vfb and Vth tunability for metal-gated MOS devices with HfLaO gate dielectrics,” IEEE Electron Device Lett., 28, pp. 258–260, Apr. 2007.
[5.22] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “Small-subthreshold-swing and low-voltage flexible organic thin-film transistors which use HfLaO as the gate dielectric,” IEEE Electron Device Lett., vol. 30, no. 2, pp. 133–135, Feb. 2009.
[5.23] K. C. Chiang, C. C. Huang, A. Chin, W. J. Chen, H. L. Kao, M. Hong, and J. Kwo, “High Performance Micro-Crystallized TaN/SrTiO3/TaN Capacitors for Analog and RF Applications,” in VLSI Symp. Tech. Dig., pp. 102–103, Jun. 2006.
[5.24] L. Pereira, P. Barquinha, E. Fortunato, R. Martins, D. Kang, C. J. Kim, H. Lim, I. Song, and Y. Park, “High dielectrics for low temperature electronics,” Thin Solid Films, vol. 516, no. 7, pp. 1544–1548, Feb. 2008.
Chapter 6
[6.1] A. Suresh, S. Novak, P. Wellenius, V. Misra, and J. Muth, “Transparent indium gallium zinc oxide transistor based floating gate memory with platinum nanoparticles in the gate dielectric,” Appl. Phy. Lett., vol. 94, pp. 123501-1–123501-3, Mar. 2009.
[6.2] H. Yin, S. Kim, H. Lim, Y. Min, C. J. Kim, I. Song, J. Park, S. W. Kim, A. Tikhonovsky, J. Hyun, and Y. Park, “Program/erase characteristics of amorphous gallium indium zinc oxide nonvolatile memory”, IEEE Trans. Electron Devices, vol. 55, no. 8, pp. 2071–2077, Aug. 2008.
[6.3] C. H. Lai, A. Chin, K. C. Chiang, W. J. Yoo, C. F. Cheng, S. P. McAlister, C. C. Chi, and P. Wu, “Novel SiO2/AlN/HfAlO/IrO2 memory with fast erase, large Vth and good retention,” in VLSI Symp. Tech. Dig., pp. 210–211, Jun. 2005.
[6.4] A. Chin, C. C. Liao, C. Chen, K. C. Chiang, D. S. Yu, W. J. Yoo, G. S. Samudra, T. Wang, I. J. Hsieh, S. P. McAlister, and C. C. Chi, “Low voltage high speed SiO2/AlGaN/AlLaO3/TaN memory with good retention,” in IEDM Tech. Dig., pp.158–161, Dec. 2005.
[6.5] C. H. Lai, A. Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo, C.C. Chi, , “Very Low Voltage SiO2/HfON/HfAlO/TaN Memory with Fast Speed and Good Retention,” in VLSI Symp. Tech. Dig., pp. 44–45, Jun. 2006.
[6.6] S. H. Lin, A. Chin, F. S. Yeh, and S. P. McAlister, “Good 150oC retention and eraser characteristics in charge-trap-engineered memory having a scaled Si3N4 layer,” in IEDM Tech. Dig., pp.843–846, Dec. 2008.
[6.7] M. F Chang, P. T. Lee, S. P. McAlister, and A. Chin, “A flexible organic pentacene nonvolatile memory based on high-k dielectric layers,” Appl. Phy. Lett., vol. 93, pp. 233302-1–233302-3, Dec. 2008.
[6.8] M. F. Chang, P. T. Lee, S. P. McAlister, and A. Chin, “Low sub-threshold swing HfLaO/pentacene organic thin Film transistors,” IEEE Electron Device Lett., vol. 29, no. 3, pp. 215–218, Mar. 2008.
[6.9] S. I. Kim, C. J. Kim, J. C. Park, I. Song, S. W. Kim, H. Yin, E. Lee, J. C. Lee, and Y. Park, “High performance oxide thin film transistor with double active layers ,” in IEDM Tech. Dig., pp. 73–76, Dec. 2008.
[6.10] C. H. Cheng, H. C. Pan, C. N. Hsiao, C. P. Chou, S. P. McAlister, and A. Chin, “Improved high-temperature leakage in high density MIM capacitors by using a TiLaO dielectric and an Ir electrode,” IEEE Electron Device Lett., vol. 28, no.12, pp. 1095–1097, Dec. 2007.
[6.11] K. C. Chiang, C. C. Huang, A. Chin, W. J. Chen, H. L. Kao, M. Hong, and J. Kwo, “High performance micro-crystallized TaN/SrTiO3/TaN capacitors for analog and RF applications,” in Symp. on VLSI Tech. Dig., pp. 102–103, Jun. 2006.
[6.12] S. H. Lin, H. J. Yang, W. B. Chen, F. S. Yeh, S. P. McAlister, and A. Chin, “Improving the retention and endurance characteristics of charge-trapping memory by using double quantum barriers,” IEEE Trans. Electron Device, vol. 55, pp. 1708–1713, Jul. 2008
校內:2012-02-12公開