| 研究生: |
范氏鳳 PHAM, THI-PHUONG |
|---|---|
| 論文名稱: |
Synthesis of Sb-doped ZnO nanorod arrays for UV photodetection and thermoelectric properties Synthesis of Sb-doped ZnO nanorod arrays for UV photodetection and thermoelectric properties |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 外文關鍵詞: | UV photodetector, thermoelectrics, hydrothermal method, Sb-doped ZnO |
| 相關次數: | 點閱:168 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
P-type ZnO nanorods were successfully synthesized with antimony (Sb) doping by hydrothermal method. The morphology of Sb-doped and undoped ZnO were observed by Scanning electron microscope, X-ray diffraction, and Transmission electron microscope. According to photoluminescence spectra, Sb doped into ZnO can create more defects inside the material, which can enhance green illuminations. Consequently, the bandgap of doped samples was slightly narrowed because of more defect levels and indicated by the red shift of the near band edge emission in UV-Vis spectra.
Especially, Sb-doped ZnO was demonstrated as p-type semiconductor through X-ray photoelectron spectroscopy and Seebeck coefficient. The photodetections of Sb-doped ZnO are reproducible and more sensitive under green illumination compared to undoped ZnO nanorods. This enhancement of responsivity is attributed to O vacancies (VO) and Zn interstitials (Zni). By further comparing different estimated doping concentrations, the responsivity and light current increase as doping concentration increases. Besides, Seebeck coefficient of undoped and doped samples shows negative and positive value, it demonstrates that Sb doped into ZnO turns ZnO nanorods from n-type to p-type. Seebeck coefficient of p-type ZnO gradually increases as increasing temperature, attributed to the hole thermal excitation. By controlling the doping concentration, ZnO materials can switch from n-type to p-type at typical temperature.
REFERENCES
1. Chen-Hao Ku and Jih-Jen Wu, Appl. Phys. Letters. 91, 093 117 (2007)
2. Seunghee Woo, Yang-Rae Kim, Taek Dong Chung, Yuanzhe Piao and Hasuck Kim, Electrochimica Acta. 59, 509 514 (2012)
3. Sampa Chakrabarti and Binay K Dutta, Journal of Hazardous Materials. B112, 269 278 (2004)
4. M.H. Huang, S. Mao, H. Fieck, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science. 292, 1897 1899
5. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi and K. Koumoto, Adv. Mater., 14, No. 6 (2002)
6. Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys.: Condens. Matter 2004, 16, R829–R858
7. Liang-Yih Chen, Wen-Hwa Chen, Jia-Jun Wang, and Franklin Chau-Nan Hong. Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering. Appl. Phys. Lett. 2004, 85, 23
8. Y.Sun, A.Gu, G.Liang, L.Yuan. Preparation and properties of transparent zinc oxide/silicone nanocomposites for the packaging of high-power light-emitting diodes. Appl. Pol. Scie. Volume 121, Issue 4, 15 August 2011 Pages 2018–2028
9. Min Wei, Chun-Fu Li, Xue-Ran Deng, Hong Deng. Surface Work Function of Transparent Conductive ZnO Films. Energy Procedia Volume 16, Part A, 2012, Pages 76-80
10. Amin Torabi and Viktor N. Staroverov. Band Gap Reduction in ZnO and ZnS by Creating Layered ZnO/ZnS Heterostructures. J. Phys. Chem. Lett., 2015, 6 (11), pp 2075–2080
11. Min-Chul Jun, Sang-Uk Park and Jung-Hyuk Koh. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Research Letters 2012, 7:639
12. J.C. Fana, K.M. Sreekanth , Z. Xied, S.L. Change, K.V. Raoa, Progress in Materials Science. 58, 6,2013, 874–985
13. F.Wang, J-H.Seo, D.Bayerl, J.Shi1, H.Mi, Z.Ma, D.Zhao, Y.Shuai , W.Zhou and X.Wang. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires. Nanotechnology 22 (2011) 225602 (8pp)
14. Y.Yang, Ken C. Pradel, Q.Jing, J.M Wu, F.Zhang, Y.Zhou, Y.Zhang, and Z.L.Wang. hermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/Nanobelts. ACS Nano, 2012, 6 (8), pp 6984–6989
15. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments, Springer-Verlag, 2001
16. P. Pichanusakorn, P. Bandaru, Nanostructured thermoelectrics, Materials Science and Engineering, 67, 2-4, (2010), 19-63
17. Z. Aksamija, I. Knezevic, Thermoelectric properties of silicon nanostructures, Journal of Computational Electronics, 9, 3-4, (2010), 173-179
18. C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features, Advanced Materials, 22, 36, (2010), 3970–3980
19. C.-H. Lee, G.-C. Yi, Y. M. Zuev, P. Kim, Thermoelectric power measurements of wide band gap semiconducting nanowires, Applied Physics Letters, 94, 022106 (2009)
20. Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys.: Condens. Matter 2004, 16, R829–R858
21. Fang, X.S.; Bando, Y.; Gautam, U.K.; Zhai, T.Y.; Zeng, H.B.; Xu, X.J.; Liao, M.Y.; Globerg, D. ZnO and ZnS nanostructures: Ultraviolet-light emitters, lasers, and sensors. Crit. Rev. Solid State Mater. Sci. 2009, 34, 190–223
22. Soci, C.; Zhang, A.; Bao, X.Y.; Kim, H.K.; Lo, Y.; Wang, D.L. Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010, 10, 1–20
23. Wang, Z.L.; Song, J.H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246
24. Cao, B.Q.; Cai, W.P.; Sun, F.Q.; Zhang, L.D. Ultraviolet-lightemitting ZnO nanosheets prepared by a chemical bath deposition method. Nanotechnology 2005, 16, 1734–1738
25. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G. ZnO nanostructures for Dye-sensitized Solar Cells. Adv. Mater. 2009, 21, 1–22.
26. Cheng, H.; Chiu, W.; Lee, C.; Tsai, S.; Hsieh, W. Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications. J. Phys. Chem. C. 2008, 112, 16359–16364.
27. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire Dye-sensitized Solar Cells. Nat. Mater. 2005, 4, 455
28. Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X. Improved dye-sensitized solar-cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 2007, 90, No. 263501
29. Martinson, A. B. F.; Elam, J.W.; Hupp, J. T.; Pellin,M. J. ZnO Nanotube Based Dye-Sensitized. Solar Cells. Nano Lett. 2007, 7, 2183–2187
30. Wang, X. D.; Ding, Y.; Summers, C. J.; Wang, Z. L. Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts. J. Phys. Chem. B 2004, 108, 8773
31. Zhang, L.D.; Fang, X.S. Controlled growth and characterization methods of semiconductor nanomaterials. J. Nanosci. Nanotechnol. 2008, 8, 149–201
32. Kind, H.; Yan, H.Q.; Messer, B.; Yang, P.D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160
33. C. Jagadish, Zinc Oxide Bulk, Thin Films and Nanostructures, First edition
34. L. M. Kukreja, S. Barik, P. Misra, J. Cryst. Growth 268, 531 (2004)
35. X. Wang, Y. Ding, C. J. Summers, Z. L. Wang, J. Phys. Chem. B 108, 8773 (2004)
36. J. W. Chiou, K. P. Krishna Kumar, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, F. Z. Chien, M.-H. Tsai, I.-H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 85, 3220 (2004)
37. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, J. M. Xu, Appl. Phys. Lett. 84, 3376 (2004)
38. Sun XW, Kwok HS. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J Appl Phys. 1999;86:408-11
39. Park YS, Schneider JR. Index of Refraction of ZnO. J Appl Phys. 1968; 39:3049-52
40. Srikant V, Clarke DR. On the optical band gap of zinc oxide. J Appl Phys. 1998;83:5447-51
41. Morkoc H, Özgür U. Zinc Oxide : Fundamentals, Materials and Device Technology. Weinheim, Bergstr: WILEY-VCH; 2008
42. Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors. Catal Surv Asia. 2003;7:63-75
43. Van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A: Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J Lumin 2000, 90:123
44. Kröger, F. A., The Chemistry of Imperfect Crystals. 2nd Edition, North Holland, Amsterdam (1974), 73
45. Mahan, G. D. Intrinsic defects in ZnO varistors, J. Appl. Phys. (1983) 54, 3825
46. Vempati, S., Mitra, J., & Dawson, P. (2012). One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Research Letters, 7, [470]
47. Michelle J.S S. Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations. Progress in Materials Science. 2012;57:437-86
48. Berger LI. Semiconductor materials. Boca Raton, Fla. [u.a.]: CRC Press; 1997
49. Lauer R B 1973 J. Phys. Chem. Solids 34 249
50. Reynolds D C, Look D C, Jogai B and Morkoc¸ H 1997 Solid State Commun. 101 643
51. Reynolds D C, Look D C, Jogai B, Van Nostrand J E, Jones R and Jenny J 1998 Solid State Commun. 106 701
52. Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943
53. Kohan A F, Ceder G, Morgan D and Van de Walle C G 2000 Phys. Rev. B 61 15019
54. Zhang S B, Wei S-H and Zunger A 2001 Phys. Rev. B 63 075205
55. Vanheusden K, Seager C H, Warren W L, Trallant D R, Caruso J, Hampden-Smith M J and Kodas T T 1997 J. Lumin. 75 11
56. Leiter F H, Alves H R, Hofstaetter A, Hofmann D M and Meyer B K 2001 Phys. Status Solidi b 226 R4
57. Kr¨oger F A and Vink H J 1954 J. Chem. Phys. 22 250
58. Studenikin S A, Golego N and Cocivera M 1998 J. Appl. Phys. 84 2287
59. Vanheusden K, Warren W L, Seager C H, Trallant D R and Voigt J A 1996 J. Appl. Phys. 79 7983
60. Janotti A and Van de Walle C G 2006 J. Cryst. Growth 287 58
61. Janotti A and Van deWalle C G 2007 Phys. Rev. B 75 165202
62. H-C.Wu, Y-C.Peng and T-P.Shen, Electronic and Optical Properties of Substitutional and Interstitial Si-Doped ZnO, Materials 2012, 5, 2088-2100
63. Vayssieres, L., et al. : Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO. J. Phys. Chem. B (2001) 105, 3350
64. Vayssieres, L.: Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. (2003) 15, 464
65. Sun, Y., et al.: Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates, J. Phys. Chem. B (2006) 110, 15186
66. Greene, L. E., et al.: General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds , Nano Lett. (2005) 5, 1231
67. Tian, Z. R., et al. : Complex and oriented ZnO nanostructures, Nat. Mater. (2003) 2, 821
68. Cheng-Liang Hsu and Shoou-Jinn Chang, Doped ZnO 1D Nanostructures: Synthesis, Properties, and Photodetector Application, small 2014, 10, No. 22, 4562–4585
69. Ahuja, I. S.; Yadava, C. L.; Singh, R. Structural information on manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium (II) sulphate complexes with hexamethylenetetramine (a potentially tetradentate ligand) from their magnetic moments, electronic and infrared spectra. J. Mol. Struct. 1982, 81, 229–234
70. Boyle, D. S.; Govender, K.; O'Brien, P. Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: Substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chem. Commun. 2002, 80–81
71. Cheng, C. W.; Yan, B.; Wong, S. M.; Li, X. L.; Zhou, W. W.; Yu, T.; Shen, Z. X.; Yu, H. Y.; Fan, H. J. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Inter. 2010, 2, 1824–1828
72. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Low temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034
73. Liu, T. Y.; Liao, H. C.; Lin, C. C.; Hu, S. H.; Chen, S. Y. Biofunctional ZnO nanorod arrays grown on flexible substrates. Langmuir 2006, 22, 5804–5809
74. Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466
75. Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813
76. Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 2011, 50, 1683–1687
77. Na, J. S.; Gong, B.; Scarel, G.; Parsons, G. N. Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 2009, 3, 3191–3199
78. Kang, B. S.; Pearton, S. J.; Ren, F. Low temperature (< 100 degrees C) patterned growth of ZnO nanorod arrays on Si. Appl. Phys. Lett. 2007, 90, 083104
79. Fang, Y. P.; Pang, Q.; Wen, X. G.; Wang, B. N.; Yang, S. H. Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate. Small 2006, 2, 612–615
80. Manekkathodi, A.; Lu, M. Y.; Wang, C. W.; Chen, L. J. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater. 2010, 22, 4059– 4063
81. Ryu Y R, Zhu S, Look D C, Wrobel J M, Yeong H M and White H W 2000 J. Cryst. Growth 216 330
82. Xiu F X, Yang Z, Mandalapu L J, Zhao D T and Liu J L 2005 Appl. Phys. Lett. 87 152101
83. Chu S, Lim J H, Mandalapu L J, Yang Z, Li L and Liu J L 2005 Appl. Phys. Lett. 92 152103
84. Limpijumnong S, Zhang S B, Wei S H and Park C H 2004 Phys. Rev. Lett. 92, 155504
85. Lee W J, Kang J and Chang K J 2006 Phys. Rev. B 73 024117
86. Park CH, Zhang SB and Wei S-H, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys.Rev.B, vol.66, pp. 073202, Aug 2002
87. Neugebauer J and Van de Walle C G 1996 Appl. Phys. Lett. 68 1829
88. Minegishi K, Koiwai Y, Kikuchi Y, Yano K, Kasuga M and Shimizu A 1997 Japan. J. Appl. Phys. Part II 36 L1453
89. Joseph M, Tabata H and Kawai T 1999 Japan. J. Appl. Phys. Part II 38 L1205
90. Fang, Y. P.; Pang, Q.; Wen, X. G.; Wang, B. N.; Yang, S. H. Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate. Small 2006, 2, 612–615
91. A. ianculescu, A. bra ileanu, G. voicu, N. dragan, D. crian. Formation and properties of some antimony-doped strontium titanate ceramics. journal of optoelectronics and advanced materials Vol. 8, No. 2, april 2006, p. 548 – 552
92. Seebeck TJ. Magnetische polarisation der metalle und erze durck temperatur-differenz. Abh K Akad Wiss 1823;265. Physical property 72. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, J. M. Xu, Appl. Phys. Lett. 84, 3376 (2004)
93. Kasper A. Borup, Johannes de Boor, Heng Wang,c Fivos Drymiotis , Measuring thermoelectric transport properties of Materials, Energy Environ. Sci., 2015, 8, 423
94. https://www.purdue.edu/ehps/rem/rs/sem.htm
95. http://www.hk-phy.org/atomic_world/tem/tem02_e.html
96. B. Puchala and D. Morgan, Atomistic modeling of As diffusion in ZnO, Phys. Rev. B 85, 064106, 2012
97. B.c. yadav, Raksha dixit1 and Satyendra singh, A review on synthesis, fabrication and properties of nanostructured pure and doped tin oxide films, International Journal of Scientific and Innovative Research 2014; 2(1): 41-57
98. Andrew B. Yankovich, Brian Puchala, Fei Wang, Jung-Hun Seo, Dane Morgan, Xudong Wang, Zhenqiang Ma, Alex V. Kvit, and Paul M. Voyles. Stable p-Type Conduction from Sb-Decorated Head-to-Head Basal Plane Inversion Domain Boundaries in ZnO Nanowires. Nano Lett., 2012, 12 (3), pp 1311–1316