簡易檢索 / 詳目顯示

研究生: 范氏鳳
PHAM, THI-PHUONG
論文名稱: Synthesis of Sb-doped ZnO nanorod arrays for UV photodetection and thermoelectric properties
Synthesis of Sb-doped ZnO nanorod arrays for UV photodetection and thermoelectric properties
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 84
外文關鍵詞: UV photodetector, thermoelectrics, hydrothermal method, Sb-doped ZnO
相關次數: 點閱:168下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • P-type ZnO nanorods were successfully synthesized with antimony (Sb) doping by hydrothermal method. The morphology of Sb-doped and undoped ZnO were observed by Scanning electron microscope, X-ray diffraction, and Transmission electron microscope. According to photoluminescence spectra, Sb doped into ZnO can create more defects inside the material, which can enhance green illuminations. Consequently, the bandgap of doped samples was slightly narrowed because of more defect levels and indicated by the red shift of the near band edge emission in UV-Vis spectra.
    Especially, Sb-doped ZnO was demonstrated as p-type semiconductor through X-ray photoelectron spectroscopy and Seebeck coefficient. The photodetections of Sb-doped ZnO are reproducible and more sensitive under green illumination compared to undoped ZnO nanorods. This enhancement of responsivity is attributed to O vacancies (VO) and Zn interstitials (Zni). By further comparing different estimated doping concentrations, the responsivity and light current increase as doping concentration increases. Besides, Seebeck coefficient of undoped and doped samples shows negative and positive value, it demonstrates that Sb doped into ZnO turns ZnO nanorods from n-type to p-type. Seebeck coefficient of p-type ZnO gradually increases as increasing temperature, attributed to the hole thermal excitation. By controlling the doping concentration, ZnO materials can switch from n-type to p-type at typical temperature.

    TABLE OF CONTENTS ACKNOWLEDGES I ABSTRACT II TABLE OF CONTENTS III LIST OF FIGURES VI LIST OF TABLES VIII CHAPTER ONE INTRODUCTION TO ZNO, UV DETECTOR AND THERMOELECTRIC GENERATOR 1 1.1 Introduction of ZnO and its doping achievement 1 1.2 ZnO nanorod applications 2 1.2.1 UV detectors based on single nanorods 2 1.2.2 Thermoelectric generators 4 CHAPTER TWO LITERATURE REVIEW 5 2.1 Properties of ZnO nanorods 5 2.1.1 Structural property 5 2.1.2 ZnO physical properties 7 2.2 Intrinsic defects in ZnO 9 2.6.1 Oxygen vacancies 11 2.6.2. Zinc vacancies 12 2.6.3. Zinc interstitials 12 2.3 Hydrothermal growth method 14 2.3.1 Alkaline precursor 17 2.3.2 Hexamethylenetetramine (HMTA) precursor 17 2.3.3 Seed layer 18 2.4 Doping in ZnO nanorods 21 2.4.1 p-type doping 22 2.4.2 n-type doping 23 2.4.3 Co-doping 23 2.5 ZnO nanorods based photodetectors 24 2.6 Thermoelectric effect 28 2.6.1 Energy havarsting 28 2.6.2 Seebeck coefficient 30 2.7 Mechanism in fabricating p-type ZnO by using Sb dopant 31 2.7.1 SbZn - 2VZn complex 31 2.7.2 SbOct - 3VZn complex 33 CHAPTER THREE RESEARCH DESIGN AND METHODOLOGY 34 3.1 Experiment flow chart 34 3.2 Growth of ZnO nanorods through hydrothermal method 35 3.3 Device for photodetection and Seebeck coefficient measurement 37 3.3.1Device fabrication 37 3.3.2 Photodetection test 37 3.3.3 Seebeck coefficient measurement 38 CHAPTER FOUR RESULTS AND DISCUSSIONS 39 4.1 Morphology and structural characterization 39 4.1.1 SEM 39 4.1.2 XRD 42 4.1.3 TEM 45 4.1.4 XPS 49 4.1.5 UV-vis 57 4.2.2 Seebeck coefficient 60 4.2.3 Conductivity and Power factor 63 4.2 Photodetection and thermoelectric properties 68 CHAPTER FIVE CONCLUSIONS AND SUGGESTIONS 77 REFERENCES 78

    REFERENCES
    1. Chen-Hao Ku and Jih-Jen Wu, Appl. Phys. Letters. 91, 093 117 (2007)
    2. Seunghee Woo, Yang-Rae Kim, Taek Dong Chung, Yuanzhe Piao and Hasuck Kim, Electrochimica Acta. 59, 509 514 (2012)
    3. Sampa Chakrabarti and Binay K Dutta, Journal of Hazardous Materials. B112, 269 278 (2004)
    4. M.H. Huang, S. Mao, H. Fieck, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science. 292, 1897 1899
    5. N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi and K. Koumoto, Adv. Mater., 14, No. 6 (2002)
    6. Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys.: Condens. Matter 2004, 16, R829–R858
    7. Liang-Yih Chen, Wen-Hwa Chen, Jia-Jun Wang, and Franklin Chau-Nan Hong. Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering. Appl. Phys. Lett. 2004, 85, 23
    8. Y.Sun, A.Gu, G.Liang, L.Yuan. Preparation and properties of transparent zinc oxide/silicone nanocomposites for the packaging of high-power light-emitting diodes. Appl. Pol. Scie. Volume 121, Issue 4, 15 August 2011 Pages 2018–2028
    9. Min Wei, Chun-Fu Li, Xue-Ran Deng, Hong Deng. Surface Work Function of Transparent Conductive ZnO Films. Energy Procedia Volume 16, Part A, 2012, Pages 76-80
    10. Amin Torabi and Viktor N. Staroverov. Band Gap Reduction in ZnO and ZnS by Creating Layered ZnO/ZnS Heterostructures. J. Phys. Chem. Lett., 2015, 6 (11), pp 2075–2080
    11. Min-Chul Jun, Sang-Uk Park and Jung-Hyuk Koh. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films. Nanoscale Research Letters 2012, 7:639
    12. J.C. Fana, K.M. Sreekanth , Z. Xied, S.L. Change, K.V. Raoa, Progress in Materials Science. 58, 6,2013, 874–985
    13. F.Wang, J-H.Seo, D.Bayerl, J.Shi1, H.Mi, Z.Ma, D.Zhao, Y.Shuai , W.Zhou and X.Wang. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires. Nanotechnology 22 (2011) 225602 (8pp)
    14. Y.Yang, Ken C. Pradel, Q.Jing, J.M Wu, F.Zhang, Y.Zhou, Y.Zhang, and Z.L.Wang. hermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/Nanobelts. ACS Nano, 2012, 6 (8), pp 6984–6989
    15. G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments, Springer-Verlag, 2001
    16. P. Pichanusakorn, P. Bandaru, Nanostructured thermoelectrics, Materials Science and Engineering, 67, 2-4, (2010), 19-63
    17. Z. Aksamija, I. Knezevic, Thermoelectric properties of silicon nanostructures, Journal of Computational Electronics, 9, 3-4, (2010), 173-179
    18. C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features, Advanced Materials, 22, 36, (2010), 3970–3980
    19. C.-H. Lee, G.-C. Yi, Y. M. Zuev, P. Kim, Thermoelectric power measurements of wide band gap semiconducting nanowires, Applied Physics Letters, 94, 022106 (2009)
    20. Wang, Z.L. Zinc oxide nanostructures: Growth, properties and applications. J. Phys.: Condens. Matter 2004, 16, R829–R858
    21. Fang, X.S.; Bando, Y.; Gautam, U.K.; Zhai, T.Y.; Zeng, H.B.; Xu, X.J.; Liao, M.Y.; Globerg, D. ZnO and ZnS nanostructures: Ultraviolet-light emitters, lasers, and sensors. Crit. Rev. Solid State Mater. Sci. 2009, 34, 190–223
    22. Soci, C.; Zhang, A.; Bao, X.Y.; Kim, H.K.; Lo, Y.; Wang, D.L. Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010, 10, 1–20
    23. Wang, Z.L.; Song, J.H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246
    24. Cao, B.Q.; Cai, W.P.; Sun, F.Q.; Zhang, L.D. Ultraviolet-lightemitting ZnO nanosheets prepared by a chemical bath deposition method. Nanotechnology 2005, 16, 1734–1738
    25. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G. ZnO nanostructures for Dye-sensitized Solar Cells. Adv. Mater. 2009, 21, 1–22.
    26. Cheng, H.; Chiu, W.; Lee, C.; Tsai, S.; Hsieh, W. Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications. J. Phys. Chem. C. 2008, 112, 16359–16364.
    27. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire Dye-sensitized Solar Cells. Nat. Mater. 2005, 4, 455
    28. Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X. Improved dye-sensitized solar-cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 2007, 90, No. 263501
    29. Martinson, A. B. F.; Elam, J.W.; Hupp, J. T.; Pellin,M. J. ZnO Nanotube Based Dye-Sensitized. Solar Cells. Nano Lett. 2007, 7, 2183–2187
    30. Wang, X. D.; Ding, Y.; Summers, C. J.; Wang, Z. L. Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts. J. Phys. Chem. B 2004, 108, 8773
    31. Zhang, L.D.; Fang, X.S. Controlled growth and characterization methods of semiconductor nanomaterials. J. Nanosci. Nanotechnol. 2008, 8, 149–201
    32. Kind, H.; Yan, H.Q.; Messer, B.; Yang, P.D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160
    33. C. Jagadish, Zinc Oxide Bulk, Thin Films and Nanostructures, First edition
    34. L. M. Kukreja, S. Barik, P. Misra, J. Cryst. Growth 268, 531 (2004)
    35. X. Wang, Y. Ding, C. J. Summers, Z. L. Wang, J. Phys. Chem. B 108, 8773 (2004)
    36. J. W. Chiou, K. P. Krishna Kumar, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, F. Z. Chien, M.-H. Tsai, I.-H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 85, 3220 (2004)
    37. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, J. M. Xu, Appl. Phys. Lett. 84, 3376 (2004)
    38. Sun XW, Kwok HS. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J Appl Phys. 1999;86:408-11
    39. Park YS, Schneider JR. Index of Refraction of ZnO. J Appl Phys. 1968; 39:3049-52
    40. Srikant V, Clarke DR. On the optical band gap of zinc oxide. J Appl Phys. 1998;83:5447-51
    41. Morkoc H, Özgür U. Zinc Oxide : Fundamentals, Materials and Device Technology. Weinheim, Bergstr: WILEY-VCH; 2008
    42. Yamazoe N, Sakai G, Shimanoe K. Oxide semiconductor gas sensors. Catal Surv Asia. 2003;7:63-75
    43. Van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A: Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J Lumin 2000, 90:123
    44. Kröger, F. A., The Chemistry of Imperfect Crystals. 2nd Edition, North Holland, Amsterdam (1974), 73
    45. Mahan, G. D. Intrinsic defects in ZnO varistors, J. Appl. Phys. (1983) 54, 3825
    46. Vempati, S., Mitra, J., & Dawson, P. (2012). One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Research Letters, 7, [470]
    47. Michelle J.S S. Gas sensing applications of 1D-nanostructured zinc oxide: Insights from density functional theory calculations. Progress in Materials Science. 2012;57:437-86
    48. Berger LI. Semiconductor materials. Boca Raton, Fla. [u.a.]: CRC Press; 1997
    49. Lauer R B 1973 J. Phys. Chem. Solids 34 249
    50. Reynolds D C, Look D C, Jogai B and Morkoc¸ H 1997 Solid State Commun. 101 643
    51. Reynolds D C, Look D C, Jogai B, Van Nostrand J E, Jones R and Jenny J 1998 Solid State Commun. 106 701
    52. Lin B, Fu Z and Jia Y 2001 Appl. Phys. Lett. 79 943
    53. Kohan A F, Ceder G, Morgan D and Van de Walle C G 2000 Phys. Rev. B 61 15019
    54. Zhang S B, Wei S-H and Zunger A 2001 Phys. Rev. B 63 075205
    55. Vanheusden K, Seager C H, Warren W L, Trallant D R, Caruso J, Hampden-Smith M J and Kodas T T 1997 J. Lumin. 75 11
    56. Leiter F H, Alves H R, Hofstaetter A, Hofmann D M and Meyer B K 2001 Phys. Status Solidi b 226 R4
    57. Kr¨oger F A and Vink H J 1954 J. Chem. Phys. 22 250
    58. Studenikin S A, Golego N and Cocivera M 1998 J. Appl. Phys. 84 2287
    59. Vanheusden K, Warren W L, Seager C H, Trallant D R and Voigt J A 1996 J. Appl. Phys. 79 7983
    60. Janotti A and Van de Walle C G 2006 J. Cryst. Growth 287 58
    61. Janotti A and Van deWalle C G 2007 Phys. Rev. B 75 165202
    62. H-C.Wu, Y-C.Peng and T-P.Shen, Electronic and Optical Properties of Substitutional and Interstitial Si-Doped ZnO, Materials 2012, 5, 2088-2100
    63. Vayssieres, L., et al. : Purpose-Built Anisotropic Metal Oxide Material:  3D Highly Oriented Microrod Array of ZnO. J. Phys. Chem. B (2001) 105, 3350
    64. Vayssieres, L.: Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. (2003) 15, 464
    65. Sun, Y., et al.: Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates, J. Phys. Chem. B (2006) 110, 15186
    66. Greene, L. E., et al.: General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds , Nano Lett. (2005) 5, 1231
    67. Tian, Z. R., et al. : Complex and oriented ZnO nanostructures, Nat. Mater. (2003) 2, 821
    68. Cheng-Liang Hsu and Shoou-Jinn Chang, Doped ZnO 1D Nanostructures: Synthesis, Properties, and Photodetector Application, small 2014, 10, No. 22, 4562–4585
    69. Ahuja, I. S.; Yadava, C. L.; Singh, R. Structural information on manganese(II), cobalt(II), nickel(II), zinc(II) and cadmium (II) sulphate complexes with hexamethylenetetramine (a potentially tetradentate ligand) from their magnetic moments, electronic and infrared spectra. J. Mol. Struct. 1982, 81, 229–234
    70. Boyle, D. S.; Govender, K.; O'Brien, P. Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: Substrate effects and evidence of the importance of counter-ions in the control of crystallite growth. Chem. Commun. 2002, 80–81
    71. Cheng, C. W.; Yan, B.; Wong, S. M.; Li, X. L.; Zhou, W. W.; Yu, T.; Shen, Z. X.; Yu, H. Y.; Fan, H. J. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Inter. 2010, 2, 1824–1828
    72. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Low temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034
    73. Liu, T. Y.; Liao, H. C.; Lin, C. C.; Hu, S. H.; Chen, S. Y. Biofunctional ZnO nanorod arrays grown on flexible substrates. Langmuir 2006, 22, 5804–5809
    74. Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466
    75. Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813
    76. Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M. L.; Wang, Z. L. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed. 2011, 50, 1683–1687
    77. Na, J. S.; Gong, B.; Scarel, G.; Parsons, G. N. Surface polarity shielding and hierarchical ZnO nano-architectures produced using sequential hydrothermal crystal synthesis and thin film atomic layer deposition. ACS Nano 2009, 3, 3191–3199
    78. Kang, B. S.; Pearton, S. J.; Ren, F. Low temperature (< 100 degrees C) patterned growth of ZnO nanorod arrays on Si. Appl. Phys. Lett. 2007, 90, 083104
    79. Fang, Y. P.; Pang, Q.; Wen, X. G.; Wang, B. N.; Yang, S. H. Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate. Small 2006, 2, 612–615
    80. Manekkathodi, A.; Lu, M. Y.; Wang, C. W.; Chen, L. J. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater. 2010, 22, 4059– 4063
    81. Ryu Y R, Zhu S, Look D C, Wrobel J M, Yeong H M and White H W 2000 J. Cryst. Growth 216 330
    82. Xiu F X, Yang Z, Mandalapu L J, Zhao D T and Liu J L 2005 Appl. Phys. Lett. 87 152101
    83. Chu S, Lim J H, Mandalapu L J, Yang Z, Li L and Liu J L 2005 Appl. Phys. Lett. 92 152103
    84. Limpijumnong S, Zhang S B, Wei S H and Park C H 2004 Phys. Rev. Lett. 92, 155504
    85. Lee W J, Kang J and Chang K J 2006 Phys. Rev. B 73 024117
    86. Park CH, Zhang SB and Wei S-H, “Origin of p-type doping difficulty in ZnO: The impurity perspective,” Phys.Rev.B, vol.66, pp. 073202, Aug 2002
    87. Neugebauer J and Van de Walle C G 1996 Appl. Phys. Lett. 68 1829
    88. Minegishi K, Koiwai Y, Kikuchi Y, Yano K, Kasuga M and Shimizu A 1997 Japan. J. Appl. Phys. Part II 36 L1453
    89. Joseph M, Tabata H and Kawai T 1999 Japan. J. Appl. Phys. Part II 38 L1205
    90. Fang, Y. P.; Pang, Q.; Wen, X. G.; Wang, B. N.; Yang, S. H. Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate. Small 2006, 2, 612–615
    91. A. ianculescu, A. bra ileanu, G. voicu, N. dragan, D. crian. Formation and properties of some antimony-doped strontium titanate ceramics. journal of optoelectronics and advanced materials Vol. 8, No. 2, april 2006, p. 548 – 552
    92. Seebeck TJ. Magnetische polarisation der metalle und erze durck temperatur-differenz. Abh K Akad Wiss 1823;265. Physical property 72. H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, J. M. Xu, Appl. Phys. Lett. 84, 3376 (2004)
    93. Kasper A. Borup, Johannes de Boor, Heng Wang,c Fivos Drymiotis , Measuring thermoelectric transport properties of Materials, Energy Environ. Sci., 2015, 8, 423
    94. https://www.purdue.edu/ehps/rem/rs/sem.htm
    95. http://www.hk-phy.org/atomic_world/tem/tem02_e.html
    96. B. Puchala and D. Morgan, Atomistic modeling of As diffusion in ZnO, Phys. Rev. B 85, 064106, 2012
    97. B.c. yadav, Raksha dixit1 and Satyendra singh, A review on synthesis, fabrication and properties of nanostructured pure and doped tin oxide films, International Journal of Scientific and Innovative Research 2014; 2(1): 41-57
    98. Andrew B. Yankovich, Brian Puchala, Fei Wang, Jung-Hun Seo, Dane Morgan, Xudong Wang, Zhenqiang Ma, Alex V. Kvit, and Paul M. Voyles. Stable p-Type Conduction from Sb-Decorated Head-to-Head Basal Plane Inversion Domain Boundaries in ZnO Nanowires. Nano Lett., 2012, 12 (3), pp 1311–1316

    下載圖示
    2020-08-01公開
    QR CODE