| 研究生: |
李侃峰 Li, Kang-Feng |
|---|---|
| 論文名稱: |
濺鍍腔內之陰極靶材電磁效應分析 Computer Aided Analysis of Magnetron Cathode in Sputtering Chamber |
| 指導教授: |
楊世銘
Yang, Shih-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 電磁效應分析 、靶材 、濺鍍 |
| 外文關鍵詞: | magnetron, target, sputtering system, ansys, cathode |
| 相關次數: | 點閱:104 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
濺鍍沉積技術已經被廣泛的應用,特別是半導體領域。對於濺鍍沉積方式中的磁式濺鍍沉積系統,有著長久以來的缺點─靶材利用率過低,造成靶材汰換週期過短,單位靶材使用成本過高。本文首先探討磁式濺鍍沉積系統原理,找出影響靶材表面離子轟擊主要因素,進而提出一傾斜式磁座設計。傾斜式磁座設計經由有限元素分析軟體-ANSYS,分析磁座最適當之磁孔傾斜角度,將磁孔傾斜角度應用到實際靶座製作。靶座製作乃採用一複合式設計,僅使半數的磁孔傾斜加工,而另半數則維持原垂直磁孔,其目的為降低確認實驗中濺鍍腔內環境條件差異問題,在同一腔室內進行濺鍍使用,以有效比較此新式設計的改良成果。分析結果顯示,磁座的磁孔傾斜式設計,能有效提昇磁力線平行分佈於靶材表面,平均靶材表面離子轟擊情形,達到增加靶材利用率。從磁式靶座之電腦輔助分析模擬到實際測試驗證都顯示出設計與實際的高度符合,可以改善靶材利用率。
It is known that the sputter deposition technology has been widely applied in semiconductor industry. However, the problem of short cycle life of target in magnetron sputtering system has been a major issue. An inclined magnet design in magnetron cathode is developed and simulated by finite element software-ANSYS in this thesis. With the magnet inclination angle, the magnetic flux distribution over target surface can be effectively and efficiently enhanced so as to smooth the unbalanced target erosion. A hybrid magnet set is developed to validate the difference between the inclined and original design under the same process condition. Experiments show that the magnet inclination design closely meets with the numerical analysis and indeed enhances the using rate of target.
REFERENCES
Chapman, B., Glow Discharge Processes, John Wiley & Sons, 1980.
Compaan, A. D., Shao, M., Tabory, C. N., Feng, Z., Fischer, A., Matulionis, I. and Bohn, R. G., “RF Sputtered CdS/CdTe Solar Cells: Effects of Magnetic Field, RF Power, Target Morphology, and Substrate Temperature,” First WCPEC, Hawaii, 1994.
Dimitris, P. L. and Demetre, J. E., “Two-Dimensional Simulation of Polysilicon Etching with Chlorine in a High Density Plasma Reactor,” IEEE Trans. on Plasma Sci., Vol. 23, No. 4, pp. 573-580, 1995.
Elistratov, N. G., Titov, K. A. and Zimin, A. M., “Investigation of Low Pressure Discharge Generated by Magnetron Plasma Device,” IEEE XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, Berkeley, 1996.
Engström, C., Berlind, T., Birch, J., Hultman, L., Ivanov, I. P.,Kirkpatrick, S. R. and Rohde, S., “Design, Plasma Studies, and Ion Assisted Thin Film Growth in an Unbalanced Dual Target Magnetron Sputtering System with a Solenoid Coil,” Vacuum, Vol. 56, pp. 107-113, 2000.
Heras, N., Torrado, A., Barandiarán, J. M. and Goikoetxea, J., “Magnetic Design of a Cathodic Arc and Sputtering Polyvalent Source for Vapor Deposition,” IEEE Trans. on Magn., Vol. 30, No. 6, pp. 4683-4685, 1994.
Iosad, N. N., Jackson, B. D., Polyakov, S. N., Dmitriev, P. N. and Klapwijk, T. M., “Reactive Magnetron Sputter-Deposition of NbN and (Nb,Ti)N Films Related to Sputtering Source Characterization and Optimization,” J. Vac. Sci. Technol., A 19(4), pp. 1840-1845, 2001.
Iosad, N. N., Jackson, B. D., Klapwijk, T. M., Polyakov, S. N., Dmitriev, P. N. and Gao J. R., “Optimization of RF- and DC-Sputtered NbTiN Films for Integration with Nb-Based SIS Junctions,” IEEE Trans. on Applied Superconductivity, Vol 9, No. 2, pp. 1716-1719, 1999.
Iosad, N. N., Klapwijk, T. M., Polyakov, S. N., Roddatis, V. V., Kov’ev, E. K. and Dmitriev, P. N., “Properties of DC Magnetron Sputtered Nb and NbN Films for Different Source Conditions,” IEEE Trans. on Applied Superconductivity, Vol 9, No. 2, pp. 1720-1723, 1999.
Kashiwagi, M. and Ido, S., “Computational Analyses of a Magnetron Sputtering System with a Ferromagnetic Target,” Vacuum, Vol. 53, pp. 33-36, 1999.
Korzekwa, R., Lehr, F. M., Krompholz, H. G. and Kristiansen, M., “The Influence of Magnetic Fields on Dielectric Surface Flashover,” IEEE Trans. on Electron Devices, Vol. 38, No. 4, pp. 745-749, 1991.
Martin, P. J., “Filtered Arc Evaporation,” Surf. Coat. Technol., Vol. 9, No. 1, pp. 51-58, 1993.
Mattox, D. M., “A Concise History of Vacuum Coating Technology,” http://www.svc.org, 2000.
Minestrini, M., Ferrario, M. Kulinski, S. and Tazzari, S., “Magnetron Sputtering Configuration for Coating 1.3GHz Cavities with a Nb Film,” IEEE Trans. on Magn., pp. 968-970, 1993.
Newman, N., Cole, B. F., Garrison, S. M., Char, K., “Double Gun Off-Axis Sputtering of Large Area Yba2Cu3O7-δ Superconducting Films for Microwave Applications,” IEEE Trans. on Magn. Vol. 27, No. 2, pp. 1276-1279, 1991.
Rettich, T. and Wiedemuth, P., “High Power Generators for Medium Frequency Sputtering Applications,” Huettinger Electronic, Inc. MF Paper2, Germany.
Rossnagel, S. M., “Sputter Deposition for Semiconductor Manufacturing,” IBM Journal of Research and Development, Vol. 43, 1/2, 1999.
Shidoji, E., Nemoto, M., Nomura, T. and Yoshikawa, Y., “3D Simulation of Target Erosion in DC Magnetron Sputtering,” Jpn. J. Appl. Phys., Vol. 33, No. 7B, pp. 4281-4284, 1994.
Shon, C. H., Lee, J. K., Lee, H. J., Yang, Y. and Chung, T. H., “Velocity Distribution in Magnetron Sputter,” IEEE Trans. on Plasma Sci., Vol. 26, No. 6, pp. 1635-1644, 1998.
Strümpfel, J., Beister, G., Schulze, D., Kammer, M. and Rehn, St., “Reactive Dual Magnetron Sputtering of Oxides for Large Area Production of Optical Multilayers,” 40th Annual Technical Conference, New Orleans, 1997.
Swirbel, T., “Zero-Defect Sputter Deposition Metallization Method for High-Volume Manufacturing of Grafted Multilayer Thin Film Models,” IEEE, pp. 1060-1065, 1992.
Takahashi, T., Ikeda, N., Naoe, M., “Improvement of Toroidal Plasma (TP) Type Sputtering for Depositing Co-Cr Films on Plasma-Free Substrates,” IEEE Trans. on Magnetics, Vol. 26, No. 5, pp. 1611-1613, 1990.
Tominaga, K., Ao, T., Sato, Y., Mori, I., Kusaka, K. and Hanabusa, T., “Magnetic Field Dependence of AlN Film Properties in DC Planar Magnetron Sputtering with Opposed Targets,” Vacuum, Vol. 51, pp. 549-553, 1998.