| 研究生: |
卓書弘 Cho, Shu-Hung |
|---|---|
| 論文名稱: |
超材料熱集中器之數值模擬與實驗分析 Numerical Simulation and Experimental Analysis of Metamaterial Thermal Concentrator |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 熱集中器 、超材料 、能量轉換 |
| 外文關鍵詞: | Thermal concentrator, Metamaterial, Energy conversion |
| 相關次數: | 點閱:113 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以數值模擬及實驗量測研究超材料熱集中器,以集中熱能至特定區域。我們運用不同的材料參數,及邊界條件,繼而模擬熱集中器在定常態與暫態下溫度場之變化,並實際設計、製作熱集中器,透過紅外線熱影像儀拍攝其溫度場的實驗結果,來與模擬結果進行比較。模擬方面,藉由改變超材料的排列結構及幾何大小,來探討理想情況下,熱集中器對各物理量的影響;實作方面,我們參考模擬設定,並修正實驗誤差。由實驗結果及數值模擬的比較可知,溫度較高的一端,差異較大;溫度較低的一端,差異卻較小。我們懷疑是因為裝置表面與上方空氣還是有些許自然對流。因此,我們透過額外的實驗來證實我們的假說,而也確實使實驗與模擬結果有更加吻合的趨勢。本研究透過模擬與實驗的結果來設計最佳的熱集中器,在選擇熱集中器材料性質及設定冷熱源溫度時,能夠由此研究得到一個參考依據。
We design a thermal concentrator which is analyzed by both numerical simulation and experimental measurement. The goal is to concentrate heat energy to a specific area. We use different materials and boundary conditions to simulate the change of temperature field under steady and transient state. In addition, a thermal concentrator is also designed and fabricated. The temperature field is captured by an infrared thermal camera, and then compared with simulation results. In simulation, by changing the arrangement structure and geometric size of metamaterial, the effect of thermal concentrator on each physical quantity is discussed. In experiment, we take into account the simulation results and modify the experimental settings. The comparison of experimental result and numerical simulation shows that there is a large difference in the high temperature side and a small difference in the low temperature side. We suspect that there is some natural convection between the hot surface and the air above the device. To resolve our hypothesis, additional experiment is needed. The experimental results did improve when natural convection is considered. In this study, the optimal thermal concentrator was designed through both simulation and experimental processes. This research can provide useful understanding when it comes to select material properties of using metamaterial for thermal concentrator.
Al-Ajlan, S. A. Measurements of thermal properties of insulation materials by using transient plane source technique. Applied Thermal Engineering 26(17-18), 2184-2191, (2006).
Bruggeman, V. D. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen Der Physic 416(7), 636-664, (1935).
Brun, M., Guenneau, S., & Movchan, A. B. Achieving control of in-plane elastic waves. Applied Physics Letters 94(6), 061903, (2009).
Chen, F., & Lei, D. Y. Experimental realization of extreme heat flux concentration with easy-to-make thermal metamaterials. Scientific Reports 5, 11552, (2015).
Chen, H., Chan, C. T., & Sheng, P. Transformation optics and metamaterials. Nature Materials 9(5), 387, (2010).
Chen, H., Yang, J., Zi, J., & Chan, C. T. Transformation media for linear liquid surface waves. Europhysics Letters 85(2), 24004, (2009).
Chen, T., Weng, C. N., & Chen, J. S. Cloak for curvilinearly anisotropic media in conduction. Applied Physics Letters 93(11), 114103, (2008)
Duplij, S., & Klinkhamer, F. Levi-Civita Symbol. Concise Encyclopedia of Supersymmetry, 227-227, (2004).
Fachinotti, V. D., Peralta, I., Huespe, A. E., Ciarbonetti, A. Control of heat flux using computationally designed metamaterials. Engineering Optimization: Proceedings 1-7, (2016).
Fan, C. Z., Gao, Y., & Huang, J. P. Shaped graded materials with an apparent negative thermal conductivity. Applied Physics Letters 92(25), 251907, (2008).
Farhat, M., Enoch, S., Guenneau, S., & Movchan, A. B. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Physical Review Letters 101(13), 134501, (2008).
Farhat, M., Guenneau, S., & Enoch, S. Ultrabroadband elastic cloaking in thin plates. Physical Review Letters 103(2), 024301, (2009).
Garnett, J.C.M. XII. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London Series A 203, 385, (1904).
Garnett, J.C.M. Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions. II. Philosophical Transactions of the Royal Society of London Series A 205, 237, (1906).
Green, M. A., Emery, K., Hishikawa, Y., & Warta, W. Solar cell efficiency tables. Photovoltaic: Research and Applications 19(1), 84-92, (2011).
Greenleaf, A., Kurylev, Y., Lassas, M., Leonhardt, U., & Uhlmann, G. Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics. Proceedings of the National Academy of Sciences 109(26), 10169-10174, (2012).
Guenneau, S., Amra, C., & Veynante, D. Transformation thermodynamics: cloaking and concentrating heat flux. Optics Express 20(7), 8207-8218, (2012).
Guenneau, S., & Amra, C. Anisotropic conductivity rotates heat fluxes in transient regimes. Optics Express 21(5), 6578-6583, (2013).
Gustafsson, S. E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of scientific instruments 62(3), 797-804, (1991).
Han, T., Bai, X., Gao, D., Thong, J. T., Li, B., & Qiu, C. W. Experimental demonstration of a bilayer thermal cloak. Physical Review Letters 112(5), 054302, (2014a).
Han, T., Bai, X., Liu, D., Gao, D., Li, B., Thong, J. T., & Qiu, C. W. Manipulating steady heat conduction by sensu-shaped thermal metamaterials. Scientific Reports 5, 10242, (2015).
Han, T., Bai, X., Thong, J. T., Li, B., & Qiu, C. W. Full control and manipulation of heat signatures: Cloaking, camouflage and thermal metamaterials. Advanced Materials 26(11), 1731-1734, (2014b).
Han, T., Yuan, T., Li, B., & Qiu, C. W. Homogeneous thermal cloak with constant conductivity and tunable heat localization. Scientific Reports 3, 1593, (2013a).
Han, T., Zhao, J., Yuan, T., Lei, D. Y., Li, B., & Qiu, C. W. Theoretical realization of an ultra-efficient thermal-energy harvesting cell made of natural materials. Energy & Environmental Science 6(12), 3537-3541, (2013b).
Lai, Y., Ng, J., Chen, H., Han, D., Xiao, J., Zhang, Z. Q., & Chan, C. T. Illusion optics: the optical transformation of an object into another object. Physical Review Letters 102(25), 253902, (2009).
Leonhardt, U., & Philbin, T. G. Transformation optics and the geometry of light. Progress in Optics 53, 69-152, (2009).
Leonhardt, U. Optical conformal mapping. Science 312(5781), 1777-1780, (2006).
Li, J. Y., Gao, Y., & Huang, J. P. A bifunctional cloak using transformation media. Journal of Applied Physics 108(7), 074504, (2010).
Li, Y., Shen, X., Wu, Z., Huang, J., Chen, Y., Ni, Y., & Huang, J. Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes. Physical Review Letters 115(19), 195503, (2015).
Liu, D. P., Chen, P. J., & Huang, H. H. Realization of a thermal cloak–concentrator using a metamaterial transformer. Scientific Reports 8(1), 2493, (2018).
Liu, Y., Sun, F., & He, S. Novel thermal lens for remote heating/cooling designed with transformation optics. Optics Express 24(6), 5683-5692, (2016).
Mark, J. Polymer Data Handbook. Oxford University Press, New York, (1999).
Narayana, S., & Sato, Y. Heat flux manipulation with engineered thermal materials. Physical Review Letters, 108(21), 214303, (2012).
Narayana, S., Savo, S., & Sato, Y. Transient heat flux shielding using thermal metamaterials. Applied Physics Letters 102(20), 201904, (2013).
Pendry, J. B., Schurig, D., & Smith, D. R. Controlling electromagnetic fields. Science 312(5781), 1780-1782, (2006).
Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R., & Pendry, J. B. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics and Nanostructures-Fundamentals and Applications 6(1), 87-95, (2008).
Stenger, N., Wilhelm, M., & Wegener, M. Experiments on elastic cloaking in thin plates. Physical Review Letters 108(1), 014301, (2012).
Sun, F., & He, S. Remote cooling by a novel thermal lens with anisotropic positive thermal conductivity. Scientific Reports 7, 40949, (2017).
Tso, C. Y., & Chao, C. Y. Solid-state thermal diode with shape memory alloys. International Journal of Heat and Mass Transfer 93, 605-611, (2016).
Vemuri, K. P., & Bandaru, P. R. Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials. Applied Physics Letters 103(13), 133111, (2013).
Yang, T., Vemuri, K. P., & Bandaru, P. R. Experimental evidence for the bending of heat flux in a thermal metamaterial. Applied Physics Letters 105(8), 083908, (2014).
Yang, T. Z., Su, Y., Xu, W., & Yang, X. D. Transient thermal camouflage and heat signature control. Applied Physics Letters 109(12), 121905, (2016).
Zhang, S., Genov, D. A., Sun, C., & Zhang, X. Cloaking of matter waves. Physical Review Letters 100(12), 123002, (2008).
開昌貿易公司 紅外線熱像儀在微小元件機械性質量測與系統整合創新產品開發應用研討會, (2005).
機械工程手冊/電機工程手冊編輯委員會 機械工程手冊-金屬材料, 五南圖書出版股份有限公司, (2002).
小栗富士雄, 小栗達男, 黃癸森譯 標準機械設計圖表便覽, 台隆書店, (1990).
校內:2020-12-30公開