| 研究生: |
吳政翰 Wu, Cheng-Han |
|---|---|
| 論文名稱: |
高溫熔融無鉛銲錫壓電噴墨技術之研究 Study of Micro-droplet of Molten Lead-free Solder by Piezoelectric Ink-jet Printing Method |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 銲錫微液滴 、雙脈衝波形 、噴印機制 、高速攝影 、銲錫隆點 |
| 外文關鍵詞: | Solder micro-droplet, bipolar waveform, ink-jet mechanism, high-speed camera, solder bump |
| 相關次數: | 點閱:127 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高溫熔融無鉛銲錫壓電噴墨印刷為一種非接觸式直接輸出成形的技術,可以噴印出微米等級的銲錫微液滴,因此廣泛被運用在電子封裝、生物晶片及微電子元件的製造上。由於在高溫製程下壓電材料的不穩定性,因此需要具備對噴墨製程原理及機制的了解,才能作為調整參數時的理論基礎。此外,銲錫隆點的形狀受到銲錫微液滴撞擊基板的行為影響,因此利用高速攝影機觀察銲錫微液滴撞擊不同表面處理過的基板,以探討其對銲錫隆點的影響。
本研究透過實驗和數值模擬方法來觀察及探討高溫熔融無鉛銲錫的壓電噴墨製程。透過商用流體力學計算軟體Flow-3D的輔助分析,得知施加一雙脈衝電壓波形,會在噴嘴上方產生壓力變化曲線,影響液滴的形態。其產生的正壓力會造成液柱的出現,後續的負壓區壓力變化則會造成液柱的斷裂,劇烈變化的負壓區造成斷裂時的不穩定,影響液滴的穩定生成。雙脈衝波形中的techo值決定毛細管內原先的壓力波及tfinalrise時所造成壓力的重合性,tfinalrise產生的負壓可抵消掉原來壓力波形中的負壓震盪,以平緩液滴頸縮及斷裂的過程,穩定液滴的生成。
除了分析壓力變化外,流體速度也是判斷液滴生成的方法。在單脈衝波形中要形成單一液滴的條件,可以調整tdwell以造成管內流體向外流動的速度與tfall時所造成流體速度互相重合,以產生足夠的向下動量來形成液柱。在雙脈衝波形中,控制techo可以調整流體往回拉的力量,有助於拉斷液柱,而形成單一液滴。比較不對稱電壓的雙脈衝波形,發現過大的向下動量造成液柱大量被擠出,若無足夠的拉力則會造成衛星液滴的出現;向下動量不足時,過大的拉力則是會造成液滴飛行速度太慢。因此可以得到負向電壓較大的不對稱電壓雙脈衝波形有助於生成穩定的單一液滴,因為其具有互相抗衡的向下動量以及拉力。
利用高速攝影系統的觀測,可以觀察到熔融銲錫微液滴撞擊經過不同表面處理基板的現象。當微銲錫液滴撞擊在覆有一層OSP層的銅墊上,則其間的界面熱傳係數便小於最小值4.07×104 W/m2•K,無法及時凝固而反彈離開。當撞擊無OSP層銅墊時,則微液滴會撞擊銅墊並在銅墊上凝固,為了達最小表面能而產生反覆的擴張及回彈的行為,隨著凝固銲錫的向上增加,液體的減少,震盪趨於不明顯,造成銲錫隆點的表面有下深上淺的皺褶出現。
This study investigated the droplet formation mechanism of molten lead-free solder under various process conditions of the ink-jet printing. Experimentally, the effects of a bipolar pulse waveform on droplet formation were observed through flash microscopic method. The numerical model was used to calculate for the detailed information concerning the droplet formation after the reliability of the numerical model has been verified. A single droplet can be obtained by applying a negative pressure variation to reduce the pressure shock in the negative pressure period which influences the contraction and break-up of the liquid thread. Fluid propagating velocity was also used to discuss the droplet formation mechanism in this study. A sufficient outward momentum of the fluid at the nozzle and a pulling force to pinch off the liquid thread were found to be essential for generating a single droplet. An asymmetric voltage of a bipolar waveform can be used to enhance the outward momentum and the pulling force of the fluid. The solder bumping process of a single molten micro-droplet was recorded using a high-speed digital camera. A droplet was observed to rebound on a copper pad coated with a layer of organic solderability preservatives, which was suspected to decease the interfacial heat transfer coefficient lower than a minimal value, 4.07×104 W/m2•K. It was found that the surface ripples on the solder bump was caused by the interaction of the fluid flow and the heat transfer/solidification processes in the bumping process.
[1] G. A. Rinne, "Solder bumping methods for flip chip packaging", 47th Electronic Components and Technology Conference Proceedings, pp. 240-247, 1997.
[2] L. Li, and P. Thompson, "Stencil printing process development for flip chip interconnect", Electronics Packaging Manufacturing, IEEE Transactions on, 23, pp. 165-170, 2000.
[3] M. Lozano, E. Cabruja, A. Collado, J. Santander, and M. Ullán, "Bump bonding of pixel systems", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 473, pp. 95-101, 2001.
[4] H. Wijshoff, "The dynamics of the piezo inkjet printhead operation", Physics Reports, 491, pp. 77-177, 2010.
[5] E. R. Lee, "Microdrop generation", New York: CRC, 2003.
[6] N. Bugdayci, D. B. Bogy, and F. E. Talke, "Axisymmetric motion of radially polarized piezoelectric cylinders used in ink jet printing", IBM Journal of Research and Development, 27, pp. 171-180, 1983.
[7] D. B. Bogy, and F. E. Talke, "Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices", IBM Journal of Research and Development, 28, pp. 314-321, 1984.
[8] R. M. Verkouteren, and J. R. Verkouteren, "Inkjet metrology II: resolved effects of ejection frequency, fluidic pressure, and droplet number on reproducible drop-on-demand dispensing", Langmuir, 27, pp. 9644-9653, 2011.
[9] P. Shin, S. Lee, J. Sung, and J. H. Kim, "Operability diagram of drop formation and its response to temperature variation in a piezoelectric inkjet nozzle", Microelectronics Reliability, 51, pp. 437-444, 2011.
[10] H. C. Wu, W. S. Hwang, and H. J. Lin, "Development of a three-dimensional simulation system for micro-inkjet and its experimental verification", Materials Science and Engineering A, 373, pp. 268-278, 2004.
[11] H. C. Wu, and H. J. Lin, "Effects of actuating pressure waveforms on the droplet behavior in a piezoelectric inkjet", Materials Transactions, 51, pp. 2269, 2010.
[12] H. J. Chang, M. H. Tsai, and W. S. Hwang, "The simulation of micro droplet behavior of molten lead-free solder in inkjet printing process and its experimental validation", Applied Mathematical Modelling, 36, pp. 3067-3079, 2012.
[13] C. S. Kim, S. J. Park, W. Sim, Y. J. Kim, and Y. Yoo, "Modeling and characterization of an industrial inkjet head for micro-patterning on printed circuit boards", Computers & Fluids, 38, pp. 602-612, 2009.
[14] C. S. Kim, W. C. Sim, J. S. Lee, Y. S. Yoo, and J. W. Joung, "Design and characterization of piezoelectric inkjet for micro patterning of printed electronics", Industrial Electronics (ISIE), 2010 IEEE International Symposium on, pp. 1817-1822, 2010.
[15] K. S. Kwon, and W. S. Kim, "A waveform design method for high-speed inkjet printing based on self-sensing measurement", Sensors and Actuators A: Physical, 140, pp. 75-83, 2007.
[16] K. S. Kwon, "Waveform design methods for piezo inkjet dispensers based on measured meniscus motion", Microelectromechanical Systems, Journal of, 18, pp. 1118-1125, 2009.
[17] P. Shin, J. Sung, and M. H. Lee, "Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle", Microelectronics Reliability, 51, pp. 797-804, 2011.
[18] K. S. Kwon, "Experimental analysis of waveform effects on satellite and ligament behavior viain situmeasurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve", Journal of Micromechanics and Microengineering, 20, pp. 115005, 2010.
[19] J. Q. Feng, "A general fluid dynamic analysis of drop ejection in drop-on-demand ink jet devices", Journal of Imaging Science and Technology, 46, pp. 398-408, 2002.
[20] E. D. Wilkes, S. D. Phillips, and O. A. Basaran, "Computational and experimental analysis of dynamics of drop formation", Physics of Fluids, 11, pp. 3577-3598, 1999.
[21] Q. Xu, O. A. Basaran, O. E. Yildirim, B. Ambravaneswaran, E. D. Wilkes, and X. Zhang, "Computational analysis of drop-on-demand drop formation", Physics of Fluids, 19, pp. 102111-102112, 2007.
[22] D. H. Jang, D. J. Kim, and J. H. Moon, "Influence of fluid physical properties on ink-jet printability", Langmuir, 25, pp. 2629-2635, 2009.
[23] Y. F. Liu, M. H. Tsai, Y. F. Pai, and W. S. Hwang, "Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing", Applied Physics A, 111, pp. 509-516, 2013.
[24] A. U. Chen, and O. A. Basaran, "A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production", Physics of Fluids, 14, pp. L1, 2002.
[25] H. Y. Gan, X. Shan, T. Eriksson, B. K. Lok, and Y. C. Lam, "Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation", Journal of Micromechanics and Microengineering, 19, pp. 055010, 2009.
[26] M. Ezzeldin, P. P. J. van den Bosch, A. Jokic, and R. Waarsing, "Model-free optimization based feedforward control for an inkjet printhead", Control Applications (CCA), 2010 IEEE International Conference on, pp. 967-972, 2010.
[27] J. Y. Hwang, M. K. Kim, S. H. Lee, K. T. Kang, H. S. Kang, and Y. J. Cho, "A study on driving waveform of a piezoelectric inkjet print head", pp. 67170T-67171-67170T-67179, 2007.
[28] B. W. Jo, A. Y. Lee, K. H. Ahn, and S. J. Lee, "Evaluation of jet performance in drop-on-demand (DOD) inkjet printing", Korean Journal of Chemical Engineering, 26, pp. 339-348, 2009.
[29] P. H. Chen, H. Y. Peng, H. Y. Liu, S. L. Chang, T. I. Wu, and C. H. Cheng, "Pressure response and droplet ejection of a piezoelectric inkjet printhead", International Journal of Mechanical Sciences, 41, pp. 235-248, 1999.
[30] S. Haferl, and D. Poulikakos, "Experimental investigation of the transient impact fluid dynamics and solidification of a molten microdroplet pile-up", International Journal of Heat and Mass Transfer, 46, pp. 535-550, 2003.
[31] D. Attinger, Z. Zhao, and D. Poulikakos, "An experimental study of molten microdroplet surface deposition and solidification: transient behavior and wetting angle dynamics", Journal of Heat Transfer, 122, pp. 544-556, 2000.
[32] S. D. Aziz, and S. Chandra, "Impact, recoil and splashing of molten metal droplets", International Journal of Heat and Mass Transfer, 43, pp. 2841-2857, 2000.
[33] S. Shakeri, and S. Chandra, "Splashing of molten tin droplets on a rough steel surface", International Journal of Heat and Mass Transfer, 45, pp. 4561-4575, 2002.
[34] S. Schiaffino, and A. A. Sonin, "Molten droplet deposition and solidification at low Weber numbers", Physics of Fluids, 9, pp. 3172-3187, 1997.
[35] R. Bhardwaj, and D. Attinger, "Non-isothermal wetting during impact of millimeter-size water drop on a flat substrate: Numerical investigation and comparison with high-speed visualization experiments", International Journal of Heat and Fluid Flow, 29, pp. 1422-1435, 2008.
[36] D. W. Tian, C. Q. Wang, and T. Y.H., "Effect of solidification on solder bump formation in solder jet process: simulation and experiment", Transaction of Nonferrous Metals Society of China, 18, pp. 1201-1208, 2008.
[37] C. M. Megaridis, K. Boomsma, and I. S. Bayer, "Partial rebound of molten-metal droplets impacting on solid substrates", AIChE Journal, 50, pp. 1356-1363, 2004.
[38] D. Attinger, and D. Poulikakos, "Melting and resolidification of a substrate caused by molten microdroplet impact", Journal of Heat Transfer, 123, pp. 1110-1122, 2001.
[39] S. Haferl, V. Butty, D. Poulikakos, J. Giannakouros, K. Boomsma, C. M. Megaridis, and V. Nayagam, "Freezing dynamics of molten solder droplets impacting onto flat substrates in reduced gravity", International Journal of Heat and Mass Transfer, 44, pp. 3513-3528, 2001.
[40] J. M. Waldvogel, and D. Poulikakos, "Solidification phenomena in picoliter size solder droplet deposition on a composite substrate", International Journal of Heat and Mass Transfer, 40, pp. 295-309, 1997.
[41] W. Wang, F. J. Hong, and H. H. Qiu, "Prediction of solder bump formation in solder jet packaging process", Components and Packaging Technologies, IEEE Transactions on, 29, pp. 486-493, 2006.
[42] P. Attané, F. Girard, and V. Morin, "An energy balance approach of the dynamics of drop impact on a solid surface", Physics of Fluids, 19, pp. 012101, 2007.
[43] J. H. Yoo, and Y. W. Park, "Experimental investigation of magnetostrictive DoD inkjet head for droplet formation", Current Applied Physics, 11, pp. S353-S359, 2011.
[44] S. J. Park, W. C. Sim, Y. S. Yoo, and J. W. Joung, "Analysis of the micro droplet ejecting performance for industrial inkjet printing head", 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 1462-1465, 2006.
[45] Y. J. Kim, W. C. Sim, C. S. Park, Y. S. Yoo, J. W. Joung, and Y. S. Oh, "The effects of driving waveform of piezoelectric industrial inkjet head for fine patterns", 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 826-831, 2006.
[46] C. W. Hirt, and B. D. Nichols, "Volume of fluid (VOF) method for the dynamics of free boundaries", Journal of Computational Physics, 39, pp. 201-225, 1981.
[47] H. C. Wu, H. J. Lin, Y. C. Kuo, and W. S. Hwang, "Simulation of droplet ejection for a piezoelectric inkjet printing device ", Materials Transactions, 45, pp. 893-899, 2004.
[48] M. H. Tsai, W. S. Hwang, and H. H. Chou, "The micro-droplet behavior of a molten lead-free solder in an inkjet printing process", Journal of Micromechanics and Microengineering, 19, pp. 125021, 2009.
[49] H. H. Chou, "Application of silver nitrate water-based solution and inkjet printing in the fabrication of 1-D and 2-D electronically conductive structures", Master Thesis, Department of Materials Science and Engineering, National Cheng Kung University, 2008.
[50] K. N. Tu, "Solder joint technology - materials, properties, and reliability", Springer Series in Materials Science, 2007.
[51] M. Ramirez, L. Henneken, and S. Virtanen, "Oxidation kinetics of thin copper films and wetting behaviour of copper and organic solderability preservatives (OSP) with lead-free solder", Applied Surface Science, 257, pp. 6481-6488, 2011.
[52] J. H. Kuo, R. J. Weng, and W. S. Hwang, "Effects of solid fraction on the heat transfer coefficient at the casting/mold interface for permanent mold casting of AZ91D magnesium alloy", Materials Transactions, 47, pp. 8, 2006.