簡易檢索 / 詳目顯示

研究生: 楊景翔
Yang, Ching-Hsiang
論文名稱: 氧化銦鎵鋅感光電晶體應用於類神經網絡及儲備池計算
Optoelectronic Characteristics of IGZO Phototransistor for Neuromorphic and Reservoir Computing
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 114
中文關鍵詞: 氧化物薄膜電晶體突觸電晶體光電電晶體儲備池計算類神經網絡
外文關鍵詞: Oxide phototransistor, Neuromorphic computing, Reservoir computing
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要I Extended Abstract III 誌謝VII 目錄VIII 圖目錄XI 表目錄XVIII 第一章 緒論1 1-1前言1 1-2研究目的與動機2 第二章 理論基礎與文獻回顧3 2-1氧化物薄膜電晶體3 2-2薄膜電晶體之運作原理5 2-3光感測器8 2-3.1光感測器種類8 2-3.2光感測器特性參數11 2-4神經突觸行為理論與應用13 2-4.1神經元基本構造13 2-4.2神經元突觸連結與動作電位15 2-4.3突觸可塑性19 2-5人工神經網絡 (Artificial Neural Network) 25 2-6傳感器內計算 (In-Sensor Computing) 29 2-7儲備池計算 (Reservoir Computing) 33 第三章 實驗方法及步驟35 3-1實驗材料35 3-1.1實驗用基材35 3-1.2基板清洗用藥劑35 3-1.3電子束蒸鍍源36 3-1.4金屬靶材36 3-1.5陶瓷靶材37 3-1.6實驗使用氣氛37 3-2實驗設備38 3-2.1濺鍍系統38 3-2.2蒸鍍系統38 3-3實驗流程39 3-3.1基板清洗39 3-3.2乾式熱氧化成長二氧化矽40 3-3.3清洗欲鍍膜之基板40 3-3.4元件製作41 3-4分析儀器42 3-4.1表面粗度儀(Alpha-Step)42 3-4.2前瞻聚焦離子束系統(Advanced Focused Ion Beam System, FIB) 43 3-4.3穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 44 3-4.4 X射線光電子能譜儀(X-ray Photoelectron Spectrometer, XPS) 45 3-4.5紫外光電子能譜儀(Ultraviolet Photoelectron Spectrometer, UPS) 46 3-4.6紫外光可見光/近紅外光分光光譜儀(UV-VIS/NIR Spectrophotometer) 47 3-4.7光源功率計(Power Meter)、光源偵測器(Detector)與雷射光源48 3-4.8半導體元件參數分析儀(Semiconductor Device Analyzer)49 第四章 結果與討論50 4-1元件疊層與命名50 4-2材料性質分析52 4-2.1 HR-TEM與EDS元件結構分析52 4-2.2 XPS表面元素與縱深分析57 4-2.3 UV-Visible薄膜光學性質與能隙分析64 4-2.4 UPS能帶結構分析67 4-3氧化銦鎵鋅薄膜電晶體純電特性分析及應用72 4-3.1 TFT I-V特性曲線及電流傳輸機制72 4-3.2成對電脈衝促進行為模仿76 4-3.3連續電脈衝刺激反應79 4-3.4連續電脈衝增益與抑制行為應用於圖像辨識84 4-4氧化銦鎵鋅薄膜電晶體光電特性分析及應用89 4-4.1氧化銦鎵鋅薄膜電晶體基本光電性質表現89 4-4.2連續光脈衝刺激反應92 4-4.3光照適應行為模擬98 4-4.4光通訊之摩斯密碼100 4-4.5光刺激圖像記憶103 4-4.6不同時序性光脈衝輸入應用於儲備池計算106 4-4.7光脈衝刺激機制探討109 結論111 參考資料112

    (1) Backus, J. Can programming be liberated from the von Neumann style? a functional style and its algebra of programs. Commun. ACM 1978, 21, 613–641. DOI: 10.1145/359576.359579.
    (2) Schuman, C. D.; Kulkarni, S. R.; Parsa, M.; Mitchell, J. P.; Date, P.; Kay, B. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2022, 2, 10-19. DOI: 10.1038/s43588-021-00184-y.
    (3) Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499-510. DOI: 10.1038/s42254-020-0208-2.
    (4) Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607-617. DOI: 10.1038/s41586-019-1677-2.
    (5) Yang, H.; Lam, K.-Y.; Xiao, L.; Xiong, Z.; Hu, H.; Niyato, D.; Vincent Poor, H. Lead federated neuromorphic learning for wireless edge artificial intelligence. Nat. Commun. 2022, 13, 4269. DOI: 10.1038/s41467-022-32020-w.
    (6) Li, B.; Chen, P.; Liu, H.; Guo, W.; Cao, X.; Du, J.; Zhao, C.; Zhang, J. Random sketch learning for deep neural networks in edge computing. Nat. Comput. Sci. 2021, 1, 221-228. DOI: 10.1038/s43588-021-00039-6.
    (7) Zhou, F.; Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 2020, 3, 664-671. DOI: 10.1038/s41928-020-00501-9.
    (8) Wan, T.; Shao, B.; Ma, S.; Zhou, Y.; Li, Q.; Chai, Y. In-Sensor Computing: Materials, Devices, and Integration Technologies. Adv. Mater. 2022, 9, 2203830. DOI: 10.1002/adma.202203830.
    (9) Shang, Z.-W.; Hsu, H.-H.; Zheng, Z.-W.; Cheng, C.-H. Progress and challenges in p-type oxide-based thin film transistors. Nanotechnol. Rev. 2019, 8, 422-443. DOI: doi:10.1515/ntrev-2019-0038.
    (10) Choi, J. Y.; Lee, S. Y. Comprehensive review on the development of high mobility in oxide thin film transistors. J. Korean Phys. Soc. 2017, 71, 516-527. DOI: 10.3938/jkps.71.516.
    (11) Thomas, S. R.; Pattanasattayavong, P.; Anthopoulos, T. D. Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem. Soc. Rev. 2013, 42, 6910-6923. DOI: 10.1039/C3CS35402D.
    (12) Liu, J.; Xia, F.; Xiao, D.; García de Abajo, F. J.; Sun, D. Semimetals for high-performance photodetection. Nat. Mater. 2020, 19, 830-837. DOI: 10.1038/s41563-020-0715-7.
    (13) Miller, D. A. B. Energy consumption in optical modulators for interconnects. Opt. Express 2012, 20, A293-A308. DOI: 10.1364/OE.20.00A293.
    (14) Chow, P. C. Y.; Matsuhisa, N.; Zalar, P.; Koizumi, M.; Yokota, T.; Someya, T. Dual-gate organic phototransistor with high-gain and linear photoresponse. Nat. Commun. 2018, 9, 4546. DOI: 10.1038/s41467-018-06907-6.
    (15) Cox, David D.; Dean, T. Neural Networks and Neuroscience-Inspired Computer Vision. Curr. Biol. 2014, 24, R921-R929. DOI: 10.1016/j.cub.2014.08.026.
    (16) Harikesh, P. C.; Yang, C.-Y.; Tu, D.; Gerasimov, J. Y.; Dar, A. M.; Armada-Moreira, A.; Massetti, M.; Kroon, R.; Bliman, D.; Olsson, R.; Stavrinidou, E.; Berggren, M.; Fabiano, S. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 2022, 13, 901. DOI: 10.1038/s41467-022-28483-6.
    (17) Pereda, A. E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 2014, 15, 250-263. DOI: 10.1038/nrn3708.
    (18) Yang, J.-Q.; Wang, R.; Ren, Y.; Mao, J.-Y.; Wang, Z.-P.; Zhou, Y.; Han, S.-T. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems. Adv. Mater. 2020, 32, 2003610. DOI: 10.1002/adma.202003610.
    (19) Pearce, J. M. S. Sir Charles Scott Sherrington (1857–1952) and the synapse. J. Neurol. Neurosurg. Psychiatry 2004, 75, 544-544. DOI: 10.1136/jnnp.2003.017921.
    (20) Zucker, R. S.; Regehr, W. G. Short-Term Synaptic Plasticity. Annu. Rev. Physiol. 2002, 64, 355-405. DOI: 10.1146/annurev.physiol.64.092501.114547.
    (21) Citri, A.; Malenka, R. C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 2008, 33, 18-41. DOI: 10.1038/sj.npp.1301559.
    (22) Abbott, L. F.; Regehr, W. G. Synaptic computation. Nature 2004, 431, 796-803. DOI: 10.1038/nature03010.
    (23) Chen, B.; Sun, S.; Fan, S.; Liu, X.; Li, Q.; Su, J. Low-Cost Fabricated MgSnO Electrolyte-Gated Synaptic Transistor with Dual Modulation of Excitation and Inhibition. Adv. Electron. Mater. 2022, 8, 2200864. DOI: 10.1002/aelm.202200864.
    (24) Yang, Y.; Calakos, N. Presynaptic long-term plasticity. Front. Synaptic Neurosci. 2013, 5, 8. DOI: 10.3389/fnsyn.2013.00008.
    (25) Collingridge, G. L.; Kehl, S. J.; McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. 1983, 334, 33-46. DOI: 10.1113/jphysiol.1983.sp014478.
    (26) Bin Ibrahim, M. Z.; Benoy, A.; Sajikumar, S. Long-term plasticity in the hippocampus: maintaining within and ‘tagging’ between synapses. FEBS J. 2022, 289, 2176-2201. DOI: 10.1111/febs.16065.
    (27) Krogh, A. What are artificial neural networks? Nat. Biotechnol. 2008, 26, 195-197. DOI: 10.1038/nbt1386.
    (28) Basheer, I. A.; Hajmeer, M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3-31. DOI: 10.1016/S0167-7012(00)00201-3.
    (29) Choi, S.; Jang, S.; Moon, J.-H.; Kim, J. C.; Jeong, H. Y.; Jang, P.; Lee, K.-J.; Wang, G. A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and energy-efficient neuromorphic systems. NPG Asia Mater. 2018, 10, 1097-1106. DOI: 10.1038/s41427-018-0101-y.
    (30) Tanaka, G.; Yamane, T.; Héroux, J. B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A. Recent advances in physical reservoir computing: A review. Neural Netw. 2019, 115, 100-123. DOI: 10.1016/j.neunet.2019.03.005.
    (31) Jaeger, H.; Haas, H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science 2004, 304, 78-80. DOI: doi:10.1126/science.1091277.
    (32) Maass, W.; Natschläger, T.; Markram, H. Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations. Neural Comput. 2002, 14, 2531-2560. DOI: 10.1162/089976602760407955.
    (33) Lee, J. S.; Lee, S.; Noh, T. W. Resistive switching phenomena: A review of statistical physics approaches. Appl. Phys. Rev. 2015, 2, 031303. DOI: 10.1063/1.4929512.
    (34) Lany, S.; Zunger, A. Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors. Phys. Rev. B 2005, 72, 035215. DOI: 10.1103/PhysRevB.72.035215.
    (35) Jeon, S.; Ahn, S.-E.; Song, I.; Kim, C. J.; Chung, U. I.; Lee, E.; Yoo, I.; Nathan, A.; Lee, S.; Ghaffarzadeh, K.; Robertson, J.; Kim, K. Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 2012, 11, 301-305. DOI: 10.1038/nmat3256.
    (36) Rieke, F.; Rudd, M. E. The Challenges Natural Images Pose for Visual Adaptation. Neuron 2009, 64, 605-616. DOI: 10.1016/j.neuron.2009.11.028.
    (37) Schneeweis, D. M.; Schnapf, J. L. The Photovoltage of Macaque Cone Photoreceptors: Adaptation, Noise, and Kinetics. J. Neurosci. 1999, 19, 1203-1216. DOI: 10.1523/jneurosci.19-04-01203.1999.
    (38) Khan, L. U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 2017, 3, 78-88. DOI: 10.1016/j.dcan.2016.07.004.

    無法下載圖示 校內:2028-08-07公開
    校外:2028-08-07公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE