簡易檢索 / 詳目顯示

研究生: 葉憲彧
Yeh, Shen-Yu
論文名稱: 以轉換聲學設計新型聲子晶體共振腔
A novel sonic crystal cavity designed by transformation acoustics
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 71
中文關鍵詞: 聲子晶體共振腔轉換聲學
外文關鍵詞: sonic crystal, cavity, transformation
相關次數: 點閱:81下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聲子晶體為兩種或兩種以上的材料經週期性排列組合而成,若將其週期性破壞會使結構型成缺陷,一般聲子晶體共振腔即利用點缺陷形成。本文利用一保角映射函數將原本正方晶格或三角晶格之完美聲子晶體轉換成另一結構,由於函數的特性,可在新結構中心產生一個空腔,當聲波入射此結構時會在空腔內產生Fabry-Pero共振,在共振腔中形成共振模態,與一般聲子晶體共振腔比較後,發現轉換後之聲子晶體共振腔之壓力放大特性與品質因子皆較為理想。再將原始聲子晶體之填充率逐漸加大,經轉換過後發現當填充率越大聲壓放大效應與品質因子皆有更為良好之效果。再進一步而探討原始聲子晶體之分布位置,經轉換後可以利用本文所提出之方法將共振頻率無因次化,使得結構可依吾人所需求之共振頻率來設計;對三角晶格聲子晶體的晶格點進行調整,使正三角形變型,再經過保角映射後,發現由於結構之對稱性慢慢被破壞,使得共振模態逐漸消失。最後以實驗印證正方晶格聲子晶體與其轉換之結構計算結果。

    Phononic crystals are artificial structures with periodically varying material parameters. Generally, a phononic cavity is formed by creating a point defect in a perfect phononic crystal. In this study, a novel sonic cavity structure is formed by conformal mapping function transformation of square and triangular lattice sonic crystals. The new cavity structure will be at the center of the sonic crystal. Fabry-Pero resonances can be observed in the cavity when sonic waves propagate through the sonic crystal. Compared with original sonic crystal with a point defect (a original structure remove a rod to form a sonic cavity), the pressure amplication and the quality factor of the new sonic crystal is better than those of original one. The higher acoustic pressure is formed in the cavity and the quality factor of the cavity increases as the filling fraction of the original crystal (perfect crystal) increases. Furthermore, the normalize resonance frequencies of transformed crystals can be evaluated according to the mapping function. We obtain the size of sonic crystal in terms of the desired resonance frequency. The conformal transformation of distorted triangular lattice crystals are also presented. It is observed that the resonance modes will disappear because symmetry of such structures is destroyed. Finally, the simulation results of square lattice sonic cavities and the transformation structure were confirmed by experiments.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 XI 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-2-1 圓形光/聲子晶體 2 1-2-2 含缺陷之聲子晶體 2 1-3 本文架構 4 第二章 數值方法 7 2-1 平面波展開法 [39-45] 7 2-1-1 正方晶格排列 10 2-1-2 三角晶格排列 11 2-1-3 超晶胞法 12 2-3 有限元素法 [46,47] 13 2-4 保角變換 17 第三章 保角映射法設計新型聲子晶體共振腔 23 3-1 正方晶格轉換之聲子晶體 23 3-1-1 轉換前後共振腔之比較 23 3-1-2 填充率對共振腔之影響 25 3-1-2 共振頻率的無因次化 26 3-2 三角晶格轉換之聲子晶體 27 3-2-1 轉換前後共振腔之比較 27 3-2-2 填充率對共振腔之影響 28 3-2-3 晶格位置對共振腔的影響 30 第四章 聲子晶體之共振腔壓力量測 53 第五章 綜合結論與未來展望 63 5-1 綜合結論 63 5-2 未來展望 64 參考文獻 65

    [1] E. Yablonovitch, “Inhibited spontaneous emission in slid-state physics and electronics”, Phys. Rew. Lett. Vol. 58, No. 20, pp. 2059 (1987)
    [2] S. John, “Strong localization of photons in certain disordered dielectric superlattice”, Phys. Rew. Lett. Vol. 58, No. 23, pp. 2486 (1987)
    [3] L. Brillouin, “Wave propagation in periodic structure”, 2nded. Dover, New York (1953)
    [4] J. Scheuer and A Yariv,” Coupled-waves approach to the design and analysis of Bragg and photonic crystal annular resonators”, J. Quantum Electron. Vol. 39, No. 12, pp. 1555 (2003)
    [5] N. Horiuchi, Y. Segawa, T. Nozokido, K. Mizuno and H. Miyazaki,” Isotropic photonic gaps in a circular photonic crystal”, Opt. Lett. Vol. 29, No. 10, pp. 1084 (2004)
    [6] N. Horiuchi, Y. Segawa, T. Nozokido, K. Mizuno and H. Miyazaki,” High-transmission waveguide with a small radius of curvature at a bend fabricated by use of a circular photonic crystal”, Opt. Lett. Vol. 30, No. 9, pp. 973 (2005)
    [7] S. Xiao, M. Qiu, “High-Q microcavities realized in a circular photonic crystal slab”, Photon. Nanostruct. Fundam. Appl. Vol. 3, No. 2-3, pp. 134 (2005)
    [8] V. Errico, T. Stomeo, A. Salhi, M. De Giorgi, A. Passaseo, and M. De Vittorio, “Quantum dot nano-cavity emission tuned by a circular photonic crystal lattice”, Microelectron. Eng. Vol. 84, No. 5-8, pp. 1570 (2007)
    [9] V. Errico, A. Salhi, C. Giordano, M. De Giorgi, A. Passaseo, and M. De Vittorio, “High-Q factor single mode circular photonic crystal nano-resonator”, Superlattices Microstruct. Vol. 43, No. 5-6, pp. 507 (2008)
    [10] D. Torrent and J. Sánchez-Dehesa, “Radial wave crystals : Radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves”, Phys. Rew. Lett. Vol. 103, No. 6, pp. 064301 (2008)
    [11] D. Torrent and J. Sánchez-Dehesa, “Acoustic resonances in two-dimensional radial sonic crystal shells”, New J. Phys. Vol. 12, No. 7, pp. 073034 (2010)
    [12] M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional composites”, J. Acoust. Soc. Am. Vol. 101, No. 3, pp. 1256 (1996)
    [13] M. M. Sigalas, “Defect states of acoustic waves in a two-dimensional lattice of solid cylinders”, J. Appl. Phys. Vol. 84, No. 6, pp. 3026 (1998)
    [14] I. E. Psarobas, N. Stefanou and A. Modinos, “Phononic crystals with planar defects”, Phys. Rev. B Vol. 62, No. 6, pp. 5536 (2000)
    [15] F. Wu, Z. Hou, Z. Liu and Y. Liu, “Point defect states in two-dimensional phononic crystals”, Phys. Lett. A Vol. 292, No. 3, pp. 198 (2001)
    [16] F. Wu, Z. Liu, Y. Liu, “Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals”, Phys. Rev. E Vol. 69, No. 6, pp. 066609 (2004)
    [17] A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, Ph. Lambin and L. Dobrzynski, “Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal”, Phys. Rev. B Vol. 65, No. 17, pp. 174308 (2002)
    [18] A. Khelif, B. Djafari-Rouhani, J. O. Vasseur and P. A. Deymier, “Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials”, Phys. Rev. B Vol. 68, No. 2, pp. 024302 (2002)
    [19] A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal”, Phys. Rev. B Vol. 68, No. 21, pp. 214301 (2003)
    [20] A. Khelif, M. Wilm, V. Laude and S. Ballandras, “Guied elastic waves along a rod defect of a two-dimensional phononic crystal”, Phys. Rev. E Vol. 69, No. 6, pp. 067601 (2004)
    [21] Y. J. Cao and Y. Z. Li, “Symmetry and coupling efficiency of the defect modes in two-dimensional phononic crystals”, Mod. Phys. Lett. B Vol. 21, No. 22, pp. 1479 (2007)
    [22] X. Li and Z. Liu, “Coupling of cavity modes and guiding modes in two-dimensional phononic crystals”, Solid State commun. Vol. 133, No. 6, pp. 397 (2005)
    [23] X. Li and Z. Liu, “Bending and branching of acoustic waves in two-dimensional phononic crystals with linear defects”, Phys. Lett. A Vol. 338, No. 3-5, pp. 413 (2005)
    [24] J. Chen, J. C. Cheng and B. Li, “Dynamics of elastic waves in two-dimensional phononic crystals with chaotic defect”, Appl. Phys. Lett. Vol. 91, No. 12, pp. 121902 (2007)
    [25] L. Y. Wu, L. W. Chen and C. M. Liu, “Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions”, Phys. Lett. A Vol. 373, No. 12-13, pp. 1189 (2009)
    [26] L. Y. Wu, L. W. Chen and C. M. Liu, “Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal”, Physica B Vol. 404, No. 12-13, pp. 1766 (2009)
    [27] L. Y. Wu, L. W. Chen and C. M. Liu, “Acoustic energy harvesting using resonant cavity of a sonic crystal”, Appl. Phys. Lett. Vol. 95, No. 1, pp. 013506 (2009)
    [28] L. Y. Wu and L. W. Chen, “Wave propergation in a 2D sonic crystal with a Helmholtz resonant defect”, J. Phys. D : Appl. Phys. Vol. 43, No. 5, pp. 055401 (2010)
    [29] Xin Zhang, Zhengyou Liu, Youyan Liu and Fugen Wu, “Defect states in 2D acoustic band-gap materials with bend-shaped linear defects”, Solid State commun. Vol. 130, No. 1-2, pp. 67 (2005)
    [30] X. Zhang, H. Dan, F. Wu and Z. Liu, “Point defect states in 2D acoustic band gap materials consisting of solid cylinders in viscous liquid”, J. Phys. D : Appl. Phys. Vol. 41, No. 15, pp. 155110 (2008)
    [31] X. Zhang, F. Wu, Y. Yao, “Frequency modulation of waveguides in acoustic band-gap materials consisting of solid cylinders in viscous liquid”, Phys. Lett. A Vol. 374, No. 9, pp. 1192 (2010)
    [32] Y. C. Zhao and L. B. Yuan, “Characteristics of multi-point defect modes in 2D phononic crystals”, J. Phys. D : Appl. Phys. Vol. 42, No. 1, pp. 015403 (2009)
    [33] M. Kafesaki, M. M. Sigalas and N García, “Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap material”, Phys. Rev. Lett. Vol. 85, No. 19, pp. 4044 (2000)
    [34] M. Kafesaki, M. M. Sigalas and N García, “Wave guides in two-dimensional elastic wave band-gap materials”, Physica B Vol. 296, No. 1-3, pp. 190 (2001)
    [35] T. Miyashita and C. Inoue, “Numerical investigations of transmission and waveguide properties of sonic crystals by finite-difference time-domain method”, Jpn. J. Appl. Phys. Vol. 40, No. 5B, pp. 3488 (2001)
    [36] T. Miyashita, “Acoustic defect-mode waveguides farbricated in sonic crystal : numerical analyses by elastic finite-difference time-domain method”, Jpn. J. Appl. Phys. Vol. 45, No. 5B, pp. 4440 (2006)
    [37] T. Miyashita, “Experimental study of a sharp bending wave-guide constructed in a sonic-crystal slab of an arry of short aluminum rods in air”, IEEE Ultrasonics Symposium Vol. 2, pp. 946 (2004)
    [38] T. Miyashita, “Sonic crystals and sonic wave-guides”, Meas. Sci. Technol. Vol. 5, No. 5B, pp. R47 (2005)
    [39] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites”, Phys. Rev. Lett. Vol. 71, No. 13, pp.2022 (1993)
    [40] M. S. Kushwaha, “Classical band structure of periodic elastic composites”, Int. J. Mod. Phys. B Vol. 10, No. 9, pp.977 (1996)
    [41] M. S. Kushwaha and P. Halevi, “Band-gap engineering in periodic elastic composites”, Appl. Phys. Lett. Vol. 64, No. 9, pp.1085 (1994)
    [42] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites”, Phys. Rev. B Vol. 49, No. 4, pp.2313 (1994)
    [43] M. S. Kushwaha and P. Halevi, “Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders”, Appl. Phys. Lett. Vol. 69, No. 1, pp.31 (1996)
    [44] M. S. Kushwaha, “Stop-bands for periodic metallic rods: Sculptures that canfilter the noice”, Appl. Phys. Lett. Vol. 70, No. 24, pp.3218 (1997)
    [45] M. S. Kushwaha and B. Djafari-Rouhani, “Giant sonic band in two-dimensional periodic system of fluids”, J. Appl. Phys. Vol. 84, No. 9, pp.4677 (1998)
    [46] COMSOL 3.5a The COMSOL Group, Stockholm, Sweden (2009)
    [47] J. N. Reddy, An introduction to the finite element method 3rded. McGraw-Hill, New York (2006)
    [48] A. Bazán, M. Torres, F. R. Montero de Espinosa, R. Quintero-Torres and J. L. Aragón, “Conformal mapping of ultrasonic crystals: Confining ultrasound and cochlearlike waveguiding”, Appl. Phys. Lett. Vol. 90, No. 9, pp.094101 (2007)
    [49] Jiří Chaloupka, Javad Zarbakhsh and Kurt Hingerl, “Local density of states and modes of circular photonic crystal cavities”, Phys. Rev. B Vol. 72, No. 8, pp.085122 (2005)

    下載圖示 校內:2014-08-08公開
    校外:2014-08-08公開
    QR CODE