| 研究生: |
蔡宇庭 Tsai, Yu-Ting |
|---|---|
| 論文名稱: |
以電泳沉積法研製具有白金閘極之異質結構場效電晶體 Fabrication of Pt-Gate Heterostructure Field-Effect Transistors Prepared by an Electrophoretic Deposition (EPD) Approach |
| 指導教授: |
劉文超
Liu, Wen-Chou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 費米能階盯住效應 、蕭特基能障 、電泳沉積法 、熱蒸鍍法 、逆微胞法 |
| 外文關鍵詞: | Fermi-level pinning effect, Schottky barrier height, Electrophoretic deposition, Thermal evaporation, Reverse micelle method |
| 相關次數: | 點閱:92 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們以有機金屬化學氣相沉積法成長及研製砷化鋁鎵/砷化銦鎵/砷化鎵擬晶性高電子移動率電晶體與氮化鋁鎵/氮化鎵高電子移動率電晶體。由於許多研究指出高溫及高能量的物理真空鍍膜技術容易對基材表面造成熱破壞,使得費米能階幾乎釘在某一定值,這使傳統元件之蕭特基能障高度也相對較低,且無法隨著改變不同金屬功函數而有所變動。為了改善費米能階釘住效應對元件影響,於本論文中使用電泳沉積法沉積金屬閘極,以獲得良好的蕭特基接面。因為蕭特基接面的品質對元件特性之影響相當直接,蕭特基能障高度的增加,會使得空乏區增大,並提高夾止及崩潰特性。
為了比較電泳沉積法與傳統熱蒸鍍之元件特性,我們分別對兩種方法所製作的元件做材料分析及電性測試,包含表面粗糙度、金屬粒徑大小及直流與微波量測等。
儘管電泳沉積法之元件展現較佳的直流特性,但其元件特性易受溫度所影響,是電泳技術需改進之處。
In this thesis, AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistors (PHEMTs) and AlGaN/GaN high electron mobility transistors (HEMTs), grown by metal organic chemical vapor deposition (MOCVD), are fabricated and investigated. Due to the thermal damage induced by high-energy and high-temperature physical vacuum deposition, the Fermi-level is almost pinned at constant value instead of different metal work function. This also results in a lower Schottky barrier height of the conventional devices. In order to eliminate Fermi-level pinning effect, the electrophoretic deposition (EPD) approach is employed to deposit metal gate to obtain well-behaved Schottky contact interface. Since the quality of Schottky contact interface directly affects the device performance, the increase of Schottky barrier height could enhance the depletion region and improve the pinch-off and breakdown characteristics.
In order to compare the characteristics of the studied devices with electrophoretic deposition (EPD) and thermal evaporation (TE), the electric characteristics and material analyses are demonstrated, including surface roughness analysis, grain size, and measurements of DC and microwave performance.
The EPD-based device exhibits better DC performance at wide temperature ambience. However, the stronger temperature-dependent characteristic and inferior microwave performance of EPD-based device are also found as compared with TE-based device.
[1] P. M. Asbeck, D. L. Miller, W. C. Petersen, and C. G. Kirkpatrick, “GaAs/GaAlAs heterojunction bipolar transistors with cutoff frequencies above 10 GHz,” IEEE Electron Device Lett., vol. 3, pp. 366-368, 1982.
[2] T. P. Chen, S. Y. Cheng, C. W. Hung, K. Y. Chu, L. Y. Chen, T. H. Tsai, and W. C. Liu, “A new InP/InGaAs double heterojunction bipolar transistor (DHBT) with a step-graded InAlGaAs collector structure,” IEEE Electron Device Lett., vol. 29, pp. 11-14, 2008.
[3] P. C. Chang, A. G. Baca, N. Y. Li, P. R. Sharps, H. Q. Hou, J. R. Laroche, and F. Ren, “InGaAsN/AlGaAs p-n-p heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 76, pp. 2788-2790, 2000.
[4] W. C. Liu, W. C. Wang, J. Y. Chen, H. J. Pan, S. Y. Cheng, K. B. Thei, and W. L. Chang, “A novel InP/InAlGaAs negative-differential-resistance heterojunction bipolar transistor (NDR-HBT) with interesting topee-shaped current-voltage characteristics,” IEEE Electron Device Lett., vol. 20, pp. 510-513, 1999.
[5] N. Pan, J. Elliott, M. Knowles, D. P. Vu, K. Kishimoto, J. K. Twynam, H. Sato, M. T. Fresina, and G. E. Stillman, “High reliability InGaP/GaAs HBT,” IEEE Electron Device Lett., vol. 19, pp. 115-117, 1998.
[6] W. S. Lour, W. C. Liu, J. H. Tsai, and L. W. Laih, “High-performance camel-gate field-effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
[7] W. S. Lour, J. H. Tsai, L. W. Laih, and W. C. Liu, “Influence of channel doping-profile on camel-gate field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
[8] W. C. Liu, K. H. Yu, K. W. Lin, J. H. Tsai, C. Z. Wu, K. P. Lin, and C. H. Yen, “On the InGaP/GaAs/InGaAs camel-like FET for high-breakdown, low-leakage, and high-temperature operations,” IEEE Trans. Electron Devices, vol. 48, pp. 1522-1530, 2001.
[9] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001.
[10] H. C. Chiu, S. C. Yang, and Y. J. Chan, “AlGaAs/InGaAs heterostructure doped-channel FET’s exhibiting good electrical performance at high temperatures,” IEEE Trans. Electron Devices, vol. 48, pp. 2210-2215, 2001.
[11] H. M. Chuang, S. Y. Cheng, X. D. Liao, C. Y. Chen, and W. C. Liu, “InGaP/InGaAs double delta-doped channel transistor,” IEEE Electron. Lett., vol. 39, pp. 1016-1018, 2003.
[12] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, pp. 1717-1723, 2003.
[13] P. Fay, K. Stevens, J. Elliot, and N. Pan, “Gate length scaling in high performance InGaP/InGaAs/GaAs PHEMTs,” IEEE Electron Device Lett., vol. 21, pp. 141-143, 2000.
[14] K. H. Yu, H. Mi. Chuang, K. W. Lin, S. Y. Cheng, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP-InGaAs-GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
[15] R. Khatri and K. Radhakrishnan, “Study of highly selective, wet gate recess process for Al0.25Ga0.75As/GaAs based pseudomorphic high electron mobility transistors,” J. Vac. Sci. & Technol. B, vol. 24, pp. 1653-1657, 2004.
[16] C. Gaquiere, J. Grunenputt, D. Jambon, E. Delos, D. Ducatteau, M. Werquin, D. Theron, and P. Fellon, “A high-power W-band psuedomorphic InGaAs channel PHEMT,” IEEE Electron Device Lett., vol. 26, pp. 533-534, 2005.
[17] P. H. Lai, C. W. Chen, C. I. Kao, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Influences of sulfur passivation on temperature-dependent characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 1-8, 2006.
[18] L. Y. Chen, H. I. Chen, S. Y. Cheng, T. P. Chen, T. H. Tsai, Y. C. Liu, Y. W. Huang, C. C. Huang, and W. C. Liu, “On the pseudomorphic high electron mobility transistors (PHEMTs) with a low-temperature gate approach,” IEEE Electron Device Lett., vol. 30, pp. 325-327, 2009.
[19] M. Zaknoune, M. Ardouin, Y. Cordier, S. Bollaert, B. Bonte, and D. Theron, “60-GHz high power performance In0.35Al0.65As-In0.35Ga0.65As metamorphic HEMTs on GaAs,” IEEE Electron Device Lett., vol. 24, pp. 724-726, 2003.
[20] Y. J. Li, W. C. Hsu, I. L. Chen, C. S. Lee, Y. J. Chen, and K. Lo, “Improved characteristics of metamorphic InAlAs/InGaAs high electron mobility transistor with symmetric graded InxGa1-xAs channel,” J. Vac. Sci. & Technol. B, vol. 22, pp. 2429-2433, 2004.
[21] P. H. Lai, S. I. Fu, C. W. Hung, Y. Y. Tsai, T. P. Chen, C. W. Chen, and W. C. Liu, “Temperature effect on impact ionization characteristics in metamorphic high electron mobility transistors,” Appl. Phys. Lett., vol. 89, pp. 263503-1-263503-3, 2006.
[22] C. C. Huang, T. Y. Chen, C. S. Hsu, C. C. Chen, C. I. Kao, and W. C. Liu, “Comprehensive temperature-dependent studies of metamorphic high electron mobility transistors (MHEMTs) with double and single δ-doped structures,” IEEE Trans. Electron Devices, vol. 58, pp. 4276-4282, 2011.
[23] Y. F. Zhang and J. Singh, “Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor,” J. Appl. Phys., vol. 85, pp. 587-594, 1999.
[24] R. Vetury, N. Q. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, pp. 560-566, 2001.
[25] Y. Cai, Y. G. Zhou, K. J. Chen, and K. M. Lau, “High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment,” IEEE Electron Device Lett., vol. 26, pp. 435-437, 2005.
[26] T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, C. F. Chang, P. C. Chou, and W. C. Liu, “On a ammonia gas sensor based on a Pt/AlGaN heterostructure field-effect transistor,” IEEE Electron Devices Lett., vol. 33, pp. 612-614, 2012.
[27] C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “On an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET)-type hydrogen gas sensor,” IEEE Electron Device Lett., vol. 33, pp. 788-790, 2012.
[28] H. C. Duran, L. Ren, M. Beck, M. A. Py, M. Begems, and W. Bachtold, “Low-frequency noise properties of selectively dry etched InP HEMTs,” IEEE Trans. Electron Devices, vol. 45, pp. 1219-1225, 1998.
[29] R. Grundbacher, R. Lai, M. Nishimoto, T. P. Chin, Y. C. Chin, Y. C. Chen, M. Barsky, T. Block, and D. Streit, “Pseudomorphic InP HEMTs with dry-etched source vias having 190 mW output power and 40% PAE at V-band,” IEEE Electron Device Lett., vol. 20, pp. 517-519, 1999.
[30] L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, “AlGaN/AlN/GaN high-power microwave HEMT,” IEEE Electron Device Lett., vol. 22, pp. 457-459, 2001.
[31] T. Palacios, A. Chakraborty, S. Rajan, C. Poblenz, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “High-power AlGaN/GaN HEMTs for Ka-band applications,” IEEE Electron Device Lett., vol. 26, pp. 781-783, 2005
[32] H. Hasegawa, “Interface-controlled Schottky barriers on InP and related materials,” Solid-State Electron., vol. 41, pp. 1441-1450, 1997.
[33] W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Lindau, “New and unified model for Schottky barrier and III-V insulator interface states formation,” J. Vac. Sci. &Technol., vol. 16, pp. 1422-1433, 1979.
[34] H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. &Technol. B, vol. 3, pp. 1130-1138, 1986.
[35] H. Hasegawa, “Fermi level pinning and Schottky barrier height control at metal-semiconductor interfaces of InP and related materials,” Jpn. J. Appl. Phys., vol. 38, pp. 1098-1102, 1999.
[36] T. Hashizume, G. Schweeger, N. J. Wu, and H. Hasegawa, “Novel in situ electrochemical technology for formation of oxide- and defect-free Schottky contact to GaAs and related low-dimensional structures,” J. Vac. Sci. Technol. B, vol. 12, pp. 2660-2666, 1994.
[37] N. J. Wu, T. Hashizume, H. Hasegawa, and Y. Amemiya, “Schottky contacts on n-InP with high barrier heights and reduced Fermi-level pinning by novel in situ electrochemical process,“ Jpn. J. Appl. Phys., vol. 34, pp. 1162-1167, 1995.
[38] S. Uno, T. Hashizume, S. Kasai, N. J. Wu, and H. Hasegawa, “0.86 eV platinum Schottky barrier in indium phosphide by un situ electrochemical process and its application to MESFETs,” Jpn. J. Appl. Phys., vol. 35, pp. 1258-1263, 1996.
[39] C. C. Huang, H. I. Chen, S. Y. Cheng, L. Y. Chen, T. H. Tsai, Y. C. Liu, T. Y. Chen, C. H. Hsu, and W. C. Liu, “On the characteristics of an electrolessplated (EP)-based pseudomorphic high electron mobility transistor (PHEMT),” Solid-State Electron., vol. 61, pp. 13-17, 2011.
[40] L. Y. Chen, H. I. Chen, C. C. Huang, Y. W. Huang, T. H. Tsai, Y. C. Liu, T. Y. Chen, S. Y. Cheng, and W. C. Liu, “Characteristics of an electroless plated-gate transistor,” Appl. Phys. Lett., vol. 95, pp. 052105, 2009.
[41] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuator B-Chem., vol. 85, pp. 10-18, 2002.
[42] R. C. Bailey, K. J. Stevenson, and J. T. Hupp, “Assembly of micropatterned colloidal gold thin film via microtransfermolding and electrophoretic deposition,” Adv. Mater., vol. 24, pp.1930-1934, 2000.
[43] J.Tabellion and R. Clasen, “Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advances ceramics and glasses-applications,” J. Mater. Sci., vol. 39, pp. 803-811, 2004.
[44] T. Ishihara, K. Shimose, T. Kudo, H. Nishiguchi, T. Akbay, and Y Takita, “Preparation of yttria-Stabilized zirconia thin films on strontium-doped LaMnO3 cathode substrates via electrophoretic deposition for solid oxide fuel cells,” J. Amer. Ceram. Soc., vol. 83, pp. 1921-1927, 2000
[45] B. Ferrari, A. J. Sanchez-Herencia, and R. Moreno, “Aqueous electrophoretic deposition of Al2O3/ZrO2 layered ceramics,” Mater. Lett., vol. 35, pp. 370-374, 1998.
[46] M. Mehrali, H. Wakily, and I. H. S C. Metselaar, “Residual stress and mechanical properties of Al2O3/ZrO2 functionally graded material prepared by EPD from 2-butanone based suspension,” Adv. Appl. Ceram., vol. 110, pp. 35-40, 2011.
[47] B. Ferrari, I. Santacruz, M.I. Nieto, and R. Moreno, “Thermogelation of Al2O3/Y-TZP films produced by electrophoretic co-deposition,” J. Eur. Ceram. Soc., vol. 24, pp. 3073-3080, 2004.
[48] C. Kaya, F. Kaya, A. R. Boccaccini, and K. K. Chawla, “Fabrication and characterisation of Ni-coated carbon fibre-reinforced alumina ceramic matrix composites using electrophoretic deposition,” Acta.Mater., vol. 49, pp. 1189-1197, 2001.
[49] L. Besra and M. Liu, “A review on fundamentals and applicationsof electrophoretic deposition (EPD),” Prog. Mater. Sci., vol. 52, pp. 1-61, 2007.
[50] I. Corni, M. P. Ryan, and A.R. Boccaccini, “Electrophoretic deposition: From traditional ceramics to nanotechnology,” J. Eur. Ceram. Soc., vol. 28, pp. 1353-1367, 2008.
[51] B. Neirinck, O. V. Biest, and J. Vleugels, “A current opinion on electrophoretic deposition in pulsed and alternating fields,” J. Phys. Chem. B, vol. 117, pp. 1516-1526, 2013.
[52] O. Omer, V. D. Biest, and L. J. Vandeperre, “Electrophoretic deposition of materials,” Annu. Rev. Mater. Sci., vol. 29, pp. 327-352, 1999.
[53] H. C. Hamaker, “Formation of deposit by electrophoresis,” Trans. Farad. Soc., vol. 36, pp. 279-283, 1940.
[54] D. H. Chen, J. J. Yeh, and T. C. Huang, “Synthesis of platinum ultrafine particles in AOT reverse micelles,” J. Colloid Interface Sci., vol. 215, pp. 159-166, 1999.
[55] J. Schmidt, C. Guesdon, and R. Schomacker, “Engineering aspects of preparation of nanocrystalline particles in microemulsions,” J. Nanopart. Res., vol. 1, pp. 267-276, 1999.
[56] A. S. Bommarius, J. F. Holzwarth, D. I. C. Wang, and T. A. Hatton, “Coalescence and solubilizate exchange in a cationic four-component revesed micellar system,“ J. Phys. Chem., vol. 94, pp. 7232-7239, 1990.
[57] M. P. Pileni, “Reverse micelles as microreactors,” J. Phys. Chem., vol. 97, pp.6961-6973, 1993.
[58] S. P. Moulik, and B. K. Paul, “Structure, dynamics and transport properties of microemulsions,” Adv. Colloid Interface Sci., vol. 78, pp. 99-195, 1998.
[59] L. B. Lai, D. H. Chen, and T. C. Huang, “Preparation and characterization of Ti-supported nanostructured Pt electrodes by electrophoretic deposition,” Mater. Res. Bull., vol. 36, pp. 1049-1055, 2001.
[60] L. B. Lai, D. H. Chen, and T. C. Huang,“Preparation and electrocatalytic activity of Pt/Ti nanostructured electrodes,” J. Mater. Chem., vol. 11, pp. 1491-1494, 2001.
[61] M. L. Wu, D. H. Chen, and T. C. Huang, “Preparation of Pd/Pt bimetallic nanoparticles in water/AOT/isooctane microemulsions,” J. Colloid Interface Sci., vil. 243, pp. 102-108, 2001.
[62] M. L. Wu, D. H. Chen, and T. C. Huang, “Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles,” Langmuir, vol. 17, pp. 3877-3883, 2001.
[63] M. L. Wu, D. H. Chen, and T. C. Huang, “Preparation of Au/Pt bimetallic nanoparticles in water-in-oil microemulsions,” Chem. Mat., vol. 13, pp. 599-606, 2001.
[64] P. L. Luisi and L. J. Magid, “Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions,” CRC Crit. Rev. Biochem., vol. 20, pp. 409, 1986.
[65] P. Sarkar and P. S. Nicholson, “Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics,” J. Am. Ceram. Soc., vol. 79, pp. 1987-2002, 1996.
[66] R. P. Bagwe and K. C. Khilar, “Effects of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT,” Langmuir, vol. 13, pp. 6432-6438, 1997.
[67] K. Martinek, “Plenary lecture at the 14th Iub congress-micellar enzymology-potentialities in fundamental and applied areas,” Biochem. Intern., vol.18, pp. 871-893, 1989.
[68] H. J. Fendler, “Atomic and molecular clusters in membrane mimetic chemistry,” Chem. Rev., vol. 87, pp. 877-899, 1987.
[69] W. C. Tan, T. W. Preist, and R. J. Sambles, “Resonant tunneling of light through thin metal films via strongly localized surface plasmons,” Phys. Rev. B, vol. 62, pp. 11134-11138, 2000.
[70] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, H. L. Lin, W. C. Liu, “Study of hydrogen-sensing characteristics of a Pt-oxide-AlGaAs metal-oxide -semiconductor high electron mobility transistor,” J. Vac. Sci. & Technol., vol. 23, pp. 1943-1947, 2005.
[71] C. W. Hung, H. L. Lin, Y. Y. Tsai, P. H. Lai, S. I. Fu, H. I. Chen, and W. C. Liu, “AlGaAs/InGaAs/GaAs transistor-based hydrogen sensing device grown by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 45, pp. 680-684, 2006.
[72] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, and W. C. Liu, “Improved temperature-dependent characteristics of a sulfur-passivatedAlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT),” J. Electrochem. Soc., vol. 153, pp. G632-G635, 2006.
[73] C. W. Hung, H. L. Lin, Y. Y. Tsai, P. H. Lai, S. I. Fu, H. I. Chen, and W. C. Liu, “New field-effect resistive Pd/oxide/AlGaAs hydrogen sensor based on pseudomorphic high electron mobility transistor (PHEMT),” Jpn. J. Appl. Phys., vol. 45, pp. L780-L782, 2006.
[74] C. W. Hung, H. C. Chang, Y. Y. Tsai, P. H. Lai, S. I. Fu, T. P. Chen, H. I. Chen, and W. C. Liu, “Study of a new field-effect resistive hydrogen sensor based on a Pd/oxide/AlGaAs transistor,” IEEE Trans. Electron Devices, vol. 52, pp. 1224-1231, 2007.
[75] W. T. Chen, H. R. Chen, S. Y. Chiu, M. K. Hsu, W. C. Liu, and W. S. Lour, “Emitter-induced gain effects on dual-emitter phototransistor as an electrooptical switch,” IEEE Trans. Electron Devices, vol. 54, pp. 2411-2417, 2007.
[76] S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd ed., John Wiley & Sons, New York, pp. 237–251, 1985.
[77] Y. S. Lin, S. S. Lu, and U. J. Wang, “High-performance Ga0.51In0.49P/GaAs airbridge gate MISFET’s grown by gas-source MBE,” IEEE Trans. Electron Devices, vol. 44, pp. 921-929, 1997.
[78] J. Shi, K. S. Chen, Q. Li, T. J. Jackson, P. E. O’Neill, and L. Tsang, “A parameterized surface reflectivity model and estimation of bare-surface soil moisture with L-band radiometer,” IEEE Trans. Geosci. Remote Sensing, vol. 40, pp. 2674-2686, 2002.
[79] H. C. Lin, F. M. Lee, Y. C. Cheng, K.W. Lee, F. Adriyanto, and Y. H. Wang, “InGaP/InGaAs MOS-PHEMT with a nanoscale liquid phase-oxidized InGaP dielectric,” Solid-State Electron., vol. 68, pp. 27-31, 2012.
[80] F. Peiro, J. C. Ferrer, A. Cornet, J. R. morante, M. Beck, and M.A. Py, “Well surface roughness and fault density effects on the Hall mobility of InxGa1-xAs/InyAl1-yAs/InP high electron mobility transistors,” J. Vac. Sci. &Technol. B, vol. 15, pp. 1715-1723, 1997.
[81] Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF performance of LP- MOCVD grown Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT’s with Si-delta doped GaAs layer,” IEEE Electron Device Lett., vol. 16, pp. 563-565, 1995.
[82] Y. S. Lin and Y. L. Hsieh, “Temperature-dependent characteristics of InGaP/InGaAs/GaAs high-electron mobility transistor measured between 77 and 470 K,” J. Electrochem. Soc., vol. 152, pp. G778-G780, 2005.
[83] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J. Appl. Phys., vol. 50, pp. 5052-5053, 1979.
[84] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys., vol. 60, pp. 1223-1224, 1986.
[85] T. C. Lee, S. Fung, C. D. Beling, and H. L. Au, “A systematic approach to the measurement of ideality factor, series resistance and barrier height for Schottky diodes,” J. Appl. Phys., vol. 72, pp. 4739-4742, 1992.
[86] K. P. Lin, C. H. Yen, W. L. Chang, K. H. Yu, K. W. Lin, and W. C. Liu, “Study of a high-barrier-gate pseudomorphic transistor with a step-compositioned channel and bottomside delta-doped sheet structure,” Semicond. Sci. Technol., vol. 15, pp. 643-647, 2000.
[87] Y. J. Chen, and M. T. Yang, “Al0.3Ga0.7As/InxGa1-xAs (0 ≤ x ≤ 0.25) doped-channel field-effect transistors (DCFET's),” IEEE Trans. Electron Devices, vol.42, pp. 1745-1749, 1995.
[88] H. Hasegawa, and T. Sato, “Electrochemical processes for formation, processing and gate control of III-V semiconductor nanostructures,” Electrochimica. Acta., vol. 50, pp. 3015-3027, 2005.
[89] C. S. Wu, Y. J. Chan, C. H. Chen, T. M. Chuang, F. Y. Juang, C. C. Chang, and J. I. Chyi. “Double-heterojunction pseudomorphic AlGaAs/In0.15Ga0.85As HEMT and its short-channel effects,” Solid-State Electron., vol. 38, pp. 377-381, 1995.
[90] H. R. Chen, M. K. Hsu, S. Y. Chiu, W. T. Chen, G. H. Chen, Y. C. Chang, C. C. Su, and W. S. Lour, “Performance ofAl0.24Ga0.76As/In0.22Ga0.78As double-heterojunction HEMTs with an as deposited and a buried gate,” Semicond. Sci. Technol., vol. 22, pp. 119-124, 2007.
[91] K. H. Yu, H. M. Chuang, K. W. Lin, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP/InGaAs/GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
[92] L. D. Nguyen, A. S. Brown M. A. Thompson, and L. M. Jelloian, “50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2007-2014, 1992.
[93] Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF performance of LP-MOCVD grown Al0.25Ga0.75As/InxGa1-xAs (x = 0.15-0.28) P-HEMT with Si-delta doped GaAs layer,” IEEE Electron Device Lett., vol. 16, pp. 563-565, 1995.
[94] H. Hasegawa, Metal-semiconductor interfaces, A. Hiraki Ed. Tokyo: IOS Press, pp. 280, 1995.
[95] H. Mizuta, K. Yamaguchi, M. Yamane, T. Tanoue, and S. Takahashi, “Two-dimensional numerical-simulation of Fermi-level pinning phenomena due to DX centers in AlGaAs/GaAs HEMTs,” IEEE Trans. Electron Devices, vol. 36, pp. 2307-2314, 1989.
[96] N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindau, “On the Fermi level pinning behavior of metal/III-V semiconductor interfaces,” J. Vac. Sci. & Technol. B, vol. 4, pp. 931-938, 1986.
[97] H. Yamagishi, “Barrier height of metal/InP Schottky contacts with interface oxide layer,” Jpn. J. Appl. Phys., vol. 25, pp. 997-1001, 1988.
[98] A. Petit, C. Robert-Goumet, L. Bideux, B. Gruzza, Z. Benamara, N. B. Bouiadjra, and V. Matolin, “Auger electronic spectroscopy and electrical characterization of InP (100) surfaces passivated by N2 plasma,” Appl. Surf. Sci., vol. 234, pp. 451-456, 2004.
[99] Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A new Pd-InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,” IEEE Electron Device Lett., vol. 26, pp. 62-65, 2005.
[100] K. Zdansky and R. Yatskiv, “Schottky barriers on InP and GaN made by deposition of colloidal graphite and Pd, Pt or bimetal Pd/Pt nanoparticles for H2-gas detection,” Sens. Actuator B-Chem., vol.165, pp. 104-109, 2012.
[101] R. Yatskiv, J. Grym, K. Zdansky, and K. Piksova, “Semimetal graphite/ZnO Schottky diodes and their use for hydrogen sensing,” Carbon, vol. 50, pp. 3928-3933, 2012.
[102] M. S. Wu and Y. J. Zheng, “Electrophoretic deposition of poly(n-vinyl-2-pyrrolidone)-capped platinum nanoparticles on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cells,” Int. J. Electrochem. Sci., vol. 7, pp. 1187-1195, 2012.
[103] Y. S. Lin, S. S. Lu, and U. J. Wang, “High-performance Ga0.51In0.49P/GaAs air bridge gate MISFET’s grown by gas-source MBE,” IEEE Trans. Electron Devices, vol. 44, pp. 921-929, 1997.
[104] H. Y. Ryu, K. H. Ha, J. H. Chae, O. H. Nam, and Y. J. Park, “Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics,” Appl. Phys. Lett., vol. 87, pp. 238-244, 2005.
[105] Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai and W. C. Liu, “On a GaN-based light-emitting diode with a p-GaN/i-InGaN superlattice structure,” IEEE Electron Device Lett., vol. 30, pp. 1149-1151, 2009.
[106] Y. J. Liu, D. F. Guo, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. H. Hsu, and W. C. Liu, “Investigation of electrostatic discharge performance of GaN-based light-emitting diodes with naturally-textured p-GaN contact layers grown on miscut sapphire substrates,” IEEE Trans. Electron Devices, vol. 57, pp. 2155-2162, 2010.
[107] J. K. Liou, Y. J. Liu, C. C. Chen, P. C. Chou, W. C. Hsu, and W. C. Liu, “On a GaN-based light-emitting diode with an aluminum metal mirror deposited on naturally-textured V-shaped pits grown on the p-GaN surface,” IEEE Electron Device Lett., vol. 33, pp. 227-229, 2012.
[108] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars, and U. K. Mishra, “AlGaN GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, pp. 277-279, 1999.
[109] A. M. Darwish, A. J. Bayba, A. Khorshid, A. Rajaie, and H. A. Hung, “Calculation of the nonlinear junction temperature for semiconductor devices using linear temperature values,” IEEE Trans. Electron Devices, vol. 59, pp. 2123-2128, 2012.
[110] J. G. Gualtieri, J. A. Kosinski, and A. Ballato, “Piezoelectric materials for acoustic-wave applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.41, pp, 53-59 1994.
[111] A. D. Bykhovski, V. V. Kaminski, M. S. Shur, Q. C. Chen, and M. A. Khan, “Piezoresistive effect in wurtzite n-type GaN,” Appl. Phys. Lett., vol. 68, pp. 818-819, 1996.
[112] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Appl. Phys. Lett., vol. 68, pp. 2541-2543, 1996.
[113] R. Gaska, J. W. Yang, A. Osinsky, A. D. Bykhovski, and M. S. Shur, “Piezoeffect and gate current in AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 71, pp. 3673-3675, 1997.
[114] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Physical Review B, vol. 56, pp. R10024-R10027, 1997.
[115] C. L. Chiang, “Controlled growth of gold nanoparticles in AOT/C12E4/isooctane mixed reverse micelles,” J. Colloid Interface Sci., vol. 239, pp. 334-341, 2001.
[116] A. Chavez-Valdez and A. R. Boccaccini, “Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods,” Electrochim. Acta, vol. 65, pp. 70-89, 2012.
[117] P. S. Khiabani, E. Marzbanrad, C. Zamani, R. Riahifar, and B. Raissi, “Fabrication of In2O3 based NO2 gas sensor through AC-electrophoretic deposition,” Sens. Actuator B-Chem., vol. 166, pp. 128-134, 2012.
[118] T. Yoshioka, A. Chavez-Valdez, J. A. Roether, D. W. Schubert, and A. R. Boccaccini, “AC electrophoretic deposition of organic-inorganic composite coatings,” J. Colloid Interface Sci., vol. 392, pp. 167-171, 2013.
[119] T. Teranishi, M. Hosoe, T. Yanaka, and M. Miyake, “Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition,” J. Phys. Chem. B, vol. 103, pp. 3818-3827, 1999.
[120] A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal-semiconductor systems,” J. Appl. Phys., vol. 36, pp. 3212-3220, 1965.
[121] K. Maeda, H. Ikoma, K. Sato, and T. Ishida, “Current-voltage characteristics and interface state density of GaAs Schottky barrier,” Appl. Phys. Lett., vol. 62, pp. 2560-2562, 1993.
[122] S. Dhar, V. R. Balakrishman, V. Kumar, and S. Ghosh, “Determination of energetic distribution of interface states between gate metal and semiconductor in sub-micron devices from current-voltage characteristics,” IEEE Trans. Electron Devices, vol. 47, pp. 282-287, 2000.
[123] H. R. Chen M. K. Hsu, S. Y. Chiu, W. T. Chen, G. H. Chen, Y. C. Chang, C. C. Su, and W. S. Lour, “Performance of Al0.24Ga0.76As/In0.22Ga0.78As double-heterojunction HEMTs with an as deposited and a buried gate,” Semicond. Sci. Technol., vol. 22, pp. 119-124, 2007.
[124] C. S. Wu, Y. J. Chan, C. D. Chen, T. M. Chuang, F. Y. Juang, C. C. Chang, and J. I. Chyi, “Double-heterojunction pseudomorphic AlGaAs/In0.15Ga0.85As HEMT and its short-channel effects, ” Solid-State Electron., vol. 38 , pp. 377-381, 1995.
[125] C. S. Lee, M .Y. Lin, B. Y. Chou, W. C. Hsu, H. Y. Liu, C. S. Ho, and Y. N . Lai, “Investigation on Al0.2Ga0.8As/In0.2Ga0.8As MOS-pHEMTs with different shifted Γ-gate structure,” J. Solid State Sci. Technol., vol. 1, pp. Q1-Q5, 2012.
[126] L. Y. Chen, H. I. Chen, S. Y. Cheng, T. H. Tsai, Y. J. Liu, C. C. Huang, T. Y. Chen, C. H. Hsu, W. C. Liu, “Performance of a GaAs-Based pseudomorphic transistor with the electroless-plated surface treated gate,” J. Electrochem. Soc., vol. 157, pp. H408-H413, 2010.
[127] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu, and C. S. Ho, “Enhanced AlGaN/GaN MOS-HEMT Performance by Using Hydrogen Peroxide Oxidation Technique,” IEEE Trans. Electron Devices, vol. 60 pp. 213-220.
[128] S. Basu, P. K. Singh, P. W. Sze, Y. H. Wang, “AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as gate dielectric,” J. Electrochem. Soc., vol. 157, pp. H947-H951, 2010.
[129] Z. Q. Cheng, S. Hu, W. J. Zhou, and J. Liu, “Effect of composited-layer AlyGa1-yN on performances of AlGaN/GaN HEMT with unintentionally doping barrier AlxGa1-xN” Microw. Opt. Technol. Lett., vol. 53, pp. 1206-1209, 2011.
[130] M. Ammam, “Electrophoretic deposition under modulated electric fields: a review,” RSC Adv., vol. 2, pp. 7633-7646, 2012.
校內:2018-07-31公開