簡易檢索 / 詳目顯示

研究生: 毛婉驊
MAO, WAN-HUA
論文名稱: 以石墨烯、氮、硫共摻雜二氧化鈦複合光觸媒於日光燈下降解室內空氣污染物甲苯之研究
Photocatalytic degradation of toluene in indoor air by graphene/S, N/TiO2 nanocomposite photocatalysts using a fluorescent lamp
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 153
中文關鍵詞: 室內空氣品質甲苯光觸媒二氧化鈦石墨烯
外文關鍵詞: Indoor air quality, Toluene, Photocatalyst, TiO2, Graphene
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大部分人們約有80%的時間待在室內,因此,室內空氣品質的重要性越來越高。室內空氣汙染物主要來自於揮發性有機物,其中甲苯極具代表性。甲苯主要汙染源來自油漆塗料、家具、消毒劑和化學藥劑中。甲苯本身具高毒性、致癌性且能長時間存在於空氣中,因此,有效去除室內空氣中甲苯的技術十分重要。
    在移除室內之揮發性有機汙染物技術中,以光觸媒氧化法為主要選項,因為這方法能使揮發性有機汙染物轉換成二氧化碳與水,不會對環境造成二次汙染。最常使用的光觸媒為二氧化鈦,因為其成本低且具高穩定度、良好的光催化能力。但因二氧化鈦之吸收波段屬於紫外光範圍,不利將其使用於室內,因此需藉由改質方法來改善二氧化鈦對於可見光之利用效率。
    本研究將透過摻雜硫、氮、石墨烯於二氧化鈦中以溶熱法製作成複合奈米光觸媒材料,以改善二氧化鈦本身吸收可見光之限制。從UV-visible 光譜的結果可得知摻雜硫、氮、石墨烯於二氧化鈦中可增加可見光的吸收強度。根據XPS、FTIR、Raman 的分析結果得知二氧化鈦複合光觸媒表面具有含氧官能基鍵結且具有化學缺陷結構。從XRD、SEM的結果得知摻雜還原氧化石墨烯會減少二氧化鈦的晶體尺寸。在光催化活性實驗中以含0.1wt%還原氧化石墨烯之硫氮摻雜二氧化鈦具有最佳的光催化活性,其轉化率達58%,添加過多的還原氧化石墨烯會造成光遮蔽效應,1wt%rGO表之轉化率僅為16%。以0.1wt%rGO光觸媒進行不同操作參數試驗中,1%RH時之轉化率最高為87%,提升水氣濃度至80%RH導致轉化率下降至44%,其可能是因為水氣與甲苯產生競爭吸附;提高操作溫度至45℃時可使轉化率增加至74%,是由於增加分子之間的碰撞機會以及吸附於表面的水減少;增加甲苯的進流濃度到4 ppm則造成轉化率下降為50%,但反應速率增加。在Langmuir-Hinshelwood之7個吸附模式中得到模式4最適合本研究結果。從操作參數與動力學試驗結果指出水氣對於甲苯光催化活性之影響遠大於溫度,因為甲苯和水氣會產生競爭吸附。根據FTIR 測試中發現甲苯在光催化過程中會生成苯甲醇、苯甲醛、苯甲酸,最後生成水和二氧化碳。

    Most people spend about 80% of their time indoors, the indoor air quality has received much attention. Indoor air pollutants mainly come from volatile organics, which toluene is one of the most representative. The main source of toluene contamination comes from paints, furniture, disinfectants and chemicals. Toluene is highly toxic, carcinogenic and long persistence in indoor environment. Therefore, it is important to effectively remove toluene in the indoor air.
    In the technology of removing indoor volatile organic pollutants, photocatalytic oxidation is one of the main methods. Because it can convert volatile organic pollutants into carbon dioxide and water, it will not cause secondary pollution to the environment. The most commonly used photocatalyst was TiO2 due to its low cost, high stability, and good photocatalytic capability. However, since the absorption band of TiO2 belongs to the ultraviolet region, it is not suitable for indoor. Therefore, it is necessary to improve the utilization efficiency of titanium dioxide for visible light by a modification method.
    In this study, the photocatalysts were prepared through doping sulfur, nitrogen and graphene in TiO2 by a solvothermal method to improve the visible light absorption of TiO2. From the results of UV-visible spectroscopy, it can be seen that the doping of sulfur, nitrogen, and graphene in TiO2 increases its absorption intensity of visible light. According to the analysis results of XPS, FTIR, and Raman, it is known that synthesis of the rGO/S0.05N0.1TiO2 composite produces oxygen-containing functional group bond and chemical defect structure. From the results of XRD and SEM, it is known that doped reduced graphene oxide reduces the crystal size of TiO2. In the photocatalytic activity experiment, 0.1wt%rGO/S0.05N0.1TiO2 has the best photocatalytic activity and adding too much reduced graphene oxide will cause a light shielding effect. In operating parameters tests, the increase in water vapor concentration resulting in a decrease in the conversion rate may be due to the competitive adsorption of water vapor and toluene; the increase in operating temperature may increase the conversion rate due to the increased chance of collisions between molecules and the reduction of water adsorbed on the photocatalyst surface. Increasing the influent concentration of toluene results in a decrease in the conversion rate. Langmuir-Hinshelwood model 4 is best suited to this study, the water vapor has more effect on the toluene conversion than the temperature. According to the FTIR test, toluene oxidation has been found to generate benzyl alcohol, benzaldehyde, and benzoic acid during the photocatalytic process, and finally to produce water and carbon dioxide.

    摘要 I ABSTRACT III 致謝 V CONTENT VI LIST OF TABLES IX LIST OF FIGURES XI CHAPTER 1 INTRODUCTION 1 1-1 MOTIVATION 1 1-2 OBJECTIVES 2 CHAPTER 2 LITERATURES REVIEW 4 2-1 INTRODUCTION OF AIR POLLUTANTS 4 2-1.1 Volatile organic compounds (VOCs) 4 2-1.2 Control technologies of VOCs 5 2-2 INTRODUCTION OF TOLUENE 7 2-2.1 Property of toluene 8 2-2.2 Hazards of toluene 11 2-3 PHOTOCATALYSIS 13 2-3.1 Photocatalyst 13 2-3.2 Principle of photocatalytic reaction 15 2-3.3 Preparation of photocatalysts 19 2-4 TITANIUM DIOXIDE 23 2-4.1 Application of TiO2 24 2-4.2 Modification of TiO2 24 2-5 GRAPHENE 28 2-5.1 Synthesis of graphene 28 2-5.2 TiO2 coupled with graphene 32 2-6 CHEMICAL REACTION KINETICS 33 2-6.1 Plug flow reactor 35 2-6.2 Catalytic kinetic model 37 2-6.3 Arrhenius equation 37 2-7 REACTION MECHANISM 39 CHAPTER 3 MATERIAL AND METHODS 40 3-1 RESEARCH SCOPE 40 3-2 EXPERIMENTAL MATERIALS AND EQUIPMENTS 42 3-2.1 Chemicals 42 3-2.2 Reactor and experimental set-up 42 3-3 EXPERIMENTAL METHODS 47 3-3.1 The preparation of graphite oxide 47 3-3.2 The preparation of photocatalysts 49 3-3.3 Photocatalytst film coating 51 3-3.4 Calibration curve 51 3-3.5 The stability test of simulated gas system of toluene 53 3-4 CHARACTERISTICS OF PHOTOCATALYSTS 53 3-4.1 Thermogravimetric/ differential thermal analysis (TG/DTA) 53 3-4.2 X-ray powder diffraction spectroscopy (XRD) 53 3-4.3 Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) 54 3-4.4 Transmission electron microscopy (TEM) 55 3-4.5 Fourier transform infrared spectroscopy (FTIR) 55 3-4.6 UV-visible spectrometry 55 3-4.7 X-ray photoelectron spectroscopy (XPS) 55 3-4.8 BET 56 3-4-9 Raman spectroscopy 57 3-5 KINETIC STUDY 57 3-6 BYPRODUCT ANALYSIS BY FTIR 57 CHAPTER 4 RESULTS AND DISCUSSION 58 4-1 CHARACTERISTICS OF PHOTOCATALYSTS 58 4-1.1 Thermogravimetric/differential thermal analysis (TG/DTA) 58 4-1.2 X-ray powder diffraction spectroscopy (XRD) 64 4-2 ACTIVITY TEST OF PHOTOCATALYSTS 105 4-3 PARAMETERS TEST OF PHOTOCATALYSTS 109 4-3.1 Effect of inlet concentration 110 4-3.2 Effect of relative humidity 113 4-3.3 Effect of temperature 116 4-3.4 Effect of residence time 119 4-3.5 Data comparison 122 4-4 KINETIC MODELS 123 4-4.1 Langmuir-Hinshelwood Model 123 4-5 MECHANISM OF PHOTOCATALYTIC REACTION 131 4-5.1 Analysis of byproducts by FTIR 131 4-5.2 Mineralization ratio analysis 134 4-5.3 Reaction pathways 135 CHAPTER 5 CONCLUSION AND SUGGESTION 137 5-1 CONCLUSION 137 5-2 SUGGESTION 138 REFERENCES 139

    Abdullah, H., Khan, M.M.R., Ong, H.R., and Yaakob, Z., 2017. Modified TiO 2 photocatalyst for CO 2 photocatalytic reduction: An overview. Journal of CO2 Utilization 22:15-32.

    Akpan, U.G., and Hameed, B.H., 2010. The advancements in sol–gel method of doped-TiO2 photocatalysts. Applied Catalysis A: General 375(1):1-11.

    Aleksandrzak, M., Adamski, P., Kukułka, W., Zielinska, B., and Mijowska, E., 2015. Effect of graphene thickness on photocatalytic activity of TiO2-graphene nanocomposites. Applied Surface Science 331:193-199.

    Anderson, S.L.T., 1986. Reaction Networks in the Catalytic Vapor-Phase Oxidation of toluene and xylenes. CATALYSIS:138-149.

    Anju, K.R., Thankapan, R., Rajabathar, J.R., and Al-Lohedan, H.A., 2018. Hydrothermal synthesis of nanosized (Fe, Co, Ni)-TiO 2 for enhanced visible light photosensitive applications. Optik 165:408-415.

    Araújo, R.D.A., Oliveira, A.L.I., and Meira, S., 2017. On the problem of forecasting air pollutant concentration with morphological models. Neurocomputing 265:91-104.

    Atsdr, 2015. Division of Toxicology and Human Health Sciences. PUBLIC HEALTH STATEMENT Toluene.

    Azuma, K., Uchiyama, I., Uchiyama, S., and Kunugita, N., 2016. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings. Environ Res 145:39-49.

    Ba-Abbad, M.M., Kadhum, A.a.H., Mohamad, A.B., Takriff, M.S., and Sopian, K., 2012. Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci 7:4871-4888.

    Barka, N., Assabbane, A., Nounah, A., and Ichou, Y.A., 2008. Photocatalytic degradation of indigo carmine in aqueous solution by TiO2-coated non-woven fibres. Journal of Hazardous Materials 152(3):1054-1059.

    Bhattacharyya, A., Kawi, S., and Ray, M.B., 2004. Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catalysis Today 98(3):431-439.

    Boningari, T., Inturi, S.N.R., Suidan, M., and Smirniotis, P.G., 2018. Novel one-step synthesis of sulfur doped-TiO 2 by flame spray pyrolysis for visible light photocatalytic degradation of acetaldehyde. Chemical Engineering Journal 339:249-258.

    Boulamanti, A.K., and Philippopoulos, C.J., 2009. Photocatalytic degradation of C5–C7 alkanes in the gas–phase. Atmospheric Environment 43(20):3168-3174.

    Brindha, A., and Sivakumar, T., 2017. Visible active N, S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. Journal of Photochemistry and Photobiology A: Chemistry 340:146-156.

    Burns, A., Hayes, G., Li, W., Hirvonen, J., Demaree, J.D., and Shah, S.I., 2004. Neodymium ion dopant effects on the phase transformation in sol–gel derived titania nanostructures. Materials Science and Engineering: B 111(2):150-155.

    Cao, L., Gao, Z., Suib, S.L., Obee, T.N., Hay, S.O., and Freihaut, J.D., 2000. Photocatalytic Oxidation of Toluene on Nanoscale TiO2 Catalysts: Studies of Deactivation and Regeneration. Journal of Catalysis 196(2):253-261.

    Chen-Yung Hsiao, C.-L., And David F. Ollis, 1983. Heterogeneous Photocatalysis: Degradation of Dilute Solutions of
    Dichloromethane (CH,CQ, Chloroform (CHC13), and Carbon
    Tetrachloride (CC14) with Illuminated TiOn Photocatalyst. Catalysis Today:418-423.

    Chen, Y., Gao, H., Xiang, J., Dong, X., and Cao, Y., 2018a. Enhanced photocatalytic activities of TiO2-reduced graphene oxide nanocomposites controlled by TiOC interfacial chemical bond. Materials Research Bulletin 99:29-36.

    Chen, Y., Gao, H., Xiang, J., Dong, X., and Cao, Y., 2018b. Enhanced photocatalytic activities of TiO 2 -reduced graphene oxide nanocomposites controlled by Ti O C interfacial chemical bond. Materials Research Bulletin 99:29-36.

    Chen, Y., Li, A., Li, Q., Hou, X., Wang, L.-N., and Huang, Z.-H., 2018c. Facile fabrication of three-dimensional interconnected nanoporous N-TiO 2 for efficient photoelectrochemical water splitting. Journal of Materials Science & Technology 34(6):955-960.

    Clough, S.R., 2014. Toluene.595-598.

    Cong, Y., Li, X., Qin, Y., Dong, Z., Yuan, G., Cui, Z., and Lai, X., 2011. Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Applied Catalysis B: Environmental 107(1):128-134.

    Dalrymple, O.K., Stefanakos, E., Trotz, M.A., and Goswami, D.Y., 2010. A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental 98(1-2):27-38.

    Dargahi, Z., Asgharzadeh, H., and Maleki-Ghaleh, H., 2018. Synthesis of Mo-doped TiO 2 /reduced graphene oxide nanocomposite for photoelectrocatalytic applications. Ceramics International.

    Debono, O., Hequet, V., Le Coq, L., Locoge, N., and Thevenet, F., 2017. VOC ternary mixture effect on ppb level photocatalytic oxidation: Removal kinetic, reaction intermediates and mineralization. Applied Catalysis B: Environmental 218:359-369.

    Dolat, D., Mozia, S., Wróbel, R.J., Moszyński, D., Ohtani, B., Guskos, N., and Morawski, A.W., 2015. Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation. Applied Catalysis B: Environmental 162:310-318.

    Dong, L., Li, M., Dong, L., Zhao, M., Feng, J., Han, Y., Deng, J., Li, X., Li, D., and Sun, X., 2014. Hydrothermal synthesis of mixed crystal phases TiO2–reduced graphene oxide nanocomposites with small particle size for lithium ion batteries. International Journal of Hydrogen Energy 39(28):16116-16122.

    Elbakkay, M.H., El Rouby, W.M.A., El-Dek, S.I., and Farghali, A.A., 2018. S-TiO 2 /S-reduced graphene oxide for enhanced photoelectrochemical water splitting. Applied Surface Science 439:1088-1102.

    Ersan, G., Apul, O.G., Perreault, F., and Karanfil, T., 2017. Adsorption of organic contaminants by graphene nanosheets: A review. Water Res 126:385-398.

    Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., and Pillai, S.C., 2015. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25:1-29.

    Fang, W., Xing, M., and Zhang, J., 2017. Modifications on reduced titanium dioxide photocatalysts: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 32:21-39.

    Fotiou, T., Triantis, T.M., Kaloudis, T., O'shea, K.E., Dionysiou, D.D., and Hiskia, A., 2016. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2. Water Res 90:52-61.

    Ghasemi, S., Hashemian, S.J., Alamolhoda, A.A., Gocheva, I., and Rahman Setayesh, S., 2017. Plasmon enhanced photocatalytic activity of Au@TiO2-graphene nanocomposite under visible light for degradation of pollutants. Materials Research Bulletin 87:40-47.

    Guo, S., Han, S., Haifeng, M., Zeng, C., Sun, Y., Chi, B., Pu, J., and Li, J., 2013. Synthesis of phosphorus-doped titania with mesoporous structure and excellent photocatalytic activity. Materials Research Bulletin 48(9):3032-3036.

    Gupta, S., and Tripathi, M., 2012. A review on the synthesis of TiO2 nanoparticles by solution route. Open Chemistry 10(2).

    Gupta, S.M., and Tripathi, M., 2011. A review of TiO2 nanoparticles. Chinese Science Bulletin 56(16):1639-1657.

    Höllbacher, E., Ters, T., Rieder-Gradinger, C., and Srebotnik, E., 2017. Emissions of indoor air pollutants from six user scenarios in a model room. Atmospheric Environment 150:389-394.

    Hao, N., Hua, R., Chen, S., Zhang, Y., Zhou, Z., Qian, J., Liu, Q., and Wang, K., 2018. Multiple signal-amplification via Ag and TiO2 decorated 3D nitrogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor. Biosens Bioelectron 101:14-20.

    Helmy, E.T., El Nemr, A., Mousa, M., Arafa, E., and Eldafrawy, S., 2018. Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C, S co-doped TiO2 nanoparticles.

    Hernández-Ramírez, A., and Medina-Ramírez, I., 2015. Photocatalytic Semiconductors-Synthesis, Characterization,and Environmental Applications.

    Hou, D., Liu, Q., Wang, X., Quan, Y., Qiao, Z., Yu, L., and Ding, S., 2018. Facile synthesis of graphene via reduction of graphene oxide by artemisinin in ethanol. Journal of Materiomics.

    Hsu, L.J., and Lin, C.C., 2012. Binary VOCs absorption in a rotating packed bed with blade packings. J Environ Manage 98:175-182.

    Hu, M., Yao, Z., Liu, X., Ma, L., He, Z., and Wang, X., 2018. Enhancement mechanism of hydroxyapatite for photocatalytic degradation of gaseous formaldehyde over TiO2/hydroxyapatite. Journal of the Taiwan Institute of Chemical Engineers 85:91-97.

    Husnah, M., Fakhri, H.A., Rohman, F., Aimon, A.H., and Iskandar, F., 2017. A modified Marcano method for improving electrical properties of reduced graphene oxide (rGO). Materials Research Express 4(6):064001.

    Jansz, J., 2017. Sick Building Syndrome.502-505.

    Jiang, T., Tao, Z., Ji, M., Zhao, Q., Fu, X., and Yin, H., 2012. Preparation and photocatalytic property of TiO2-graphite oxide intercalated composite. Catalysis Communications 28:47-51.

    Jimmy, Z.W.Y.C.F.Q.W.L.C.J.Y., 2013. Ultrasonic fabrication of N-doped TiO2 nanocrystals with mesoporous structure and enhanced visible light photocatalytic activity. Chinese Journal of Catalysis:1250-1255.

    Kamal, M.S., Razzak, S.A., and Hossain, M.M., 2016. Catalytic oxidation of volatile organic compounds (VOCs) – A review. Atmospheric Environment 140:117-134.

    Karmakar, A., Mallick, T., Das, S., and Begum, N.A., 2018. Naturally occurring green multifunctional agents: Exploration of their roles in the world of graphene and related systems. Nano-Structures & Nano-Objects 13:1-20.

    Khaki, M.R.D., Shafeeyan, M.S., Raman, A.a.A., and Daud, W., 2017. Application of doped photocatalysts for organic pollutant degradation - A review. J Environ Manage 198(Pt 2):78-94.

    Khalid, N.R., Majid, A., Tahir, M.B., Niaz, N.A., and Khalid, S., 2017. Carbonaceous-TiO 2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceramics International 43(17):14552-14571.

    Khan, M.M., Adil, S.F., and Al-Mayouf, A., 2015. Metal oxides as photocatalysts. Journal of Saudi Chemical Society 19(5):462-464.

    Khojasteh, H., Salavati-Niasari, M., Safajou, H., and Safardoust-Hojaghan, H., 2017. Facile reduction of graphene using urea in solid phase and surface modification by N-doped graphene quantum dots for adsorption of organic dyes. Diamond and Related Materials 79:133-144.

    Kumar, K.D., Kumar, G.P., and Reddy, K.S., 2015. Rapid Microwave Synthesis of Reduced Graphene Oxide-supported TiO2 Nanostructures as High Performance Photocatalyst. Materials Today: Proceedings 2(4-5):3736-3742.

    Kyzas, G.Z., Deliyanni, E.A., Bikiaris, D.N., and Mitropoulos, A.C., 2018. Graphene composites as dye adsorbents: Review. Chemical Engineering Research and Design 129:75-88.

    Lee, J.Y., and Jo, W.K., 2016. Heterojunction-based two-dimensional N-doped TiO(2)/WO(3) composite architectures for photocatalytic treatment of hazardous organic vapor. J Hazard Mater 314:22-31.

    Li, X., Li, J., Shi, Y., Zhang, M., Fan, S., Yin, Z., Qin, M., Lian, T., and Li, X., 2018a. Rational design of cobalt and nitrogen co-doped carbon hollow frameworks for efficient photocatalytic degradation of gaseous toluene. Journal of Colloid and Interface Science 528:45-52.

    Li, X., Shen, R., Ma, S., Chen, X., and Xie, J., 2018b. Graphene-based heterojunction photocatalysts. Applied Surface Science 430:53-107.

    Lin, W., Xie, X., Wang, X., Wang, Y., Segets, D., and Sun, J., 2018. Efficient Adsorption and Sustainable Degradation of Gaseous Acetaldehyde and O-xylene using rGO-TiO 2 Photocatalyst. Chemical Engineering Journal.

    Liu, C., Zhang, L., Liu, R., Gao, Z., Yang, X., Tu, Z., Yang, F., Ye, Z., Cui, L., and Xu, C., 2016. Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties. Journal of Alloys and Compounds 656:24-32.

    Liu, J.-M., Ma, F.-Y., Zhu, Y.-H., Ye, Y.-F., Liang, Y.-Q., Liu, Y.-E., and Wei, X.-Y., 2018. Hydrodynamic cavitation for the enhancement of toluene disproportionation; study of the products distribution. Chemical Engineering and Processing - Process Intensification 125:34-43.

    Liu, L., Zhang, D., Zhang, Q., Chen, X., Xu, G., Lu, Y., and Liu, Q., 2017. Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection. Biosens Bioelectron 93:94-101.

    Liu, Z., Fang, P., Wang, S., Gao, Y., Chen, F., Zheng, F., Liu, Y., and Dai, Y., 2012. Photocatalytic degradation of gaseous benzene with CdS-sensitized TiO2 film coated on fiberglass cloth. Journal of Molecular Catalysis A: Chemical 363-364:159-165.

    Luttrell, W.E., and Ngendahimana, T., 2012. Toxic tips: Toluene. Journal of Chemical Health and Safety 19(3):34-35.

    Lv, J., and Zhu, L., 2013. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time. Environ Technol 34(9-12):1447-1454.

    Mamaghani, A.H., Haghighat, F., and Lee, C.-S., 2017. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental 203:247-269.

    Mamaghani, A.H., Haghighat, F., and Lee, C.-S., 2018. Photocatalytic degradation of VOCs on various commercial titanium dioxides: Impact of operating parameters on removal efficiency and by-products generation. Building and Environment 138:275-282.

    Martins, P.M., Ferreira, C.G., Silva, A.R., Magalhães, B., Alves, M.M., Pereira, L., Marques, P.a.a.P., Melle-Franco, M., and Lanceros-Méndez, S., 2018. TiO 2 /graphene and TiO 2 /graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study. Composites Part B: Engineering 145:39-46.

    Mcnamara, M.L., Thornburg, J., Semmens, E.O., Ward, T.J., and Noonan, C.W., 2017. Reducing indoor air pollutants with air filtration units in wood stove homes. Sci Total Environ 592:488-494.

    Miaralipour, S., Friedmann, D., Scott, J., and Amal, R., 2018. TiO2/porous adsorbents: Recent advances and novel applications. J Hazard Mater 341:404-423.

    Min, Y., Zhang, K., Zhao, W., Zheng, F., Chen, Y., and Zhang, Y., 2012. Enhanced chemical interaction between TiO2 and graphene oxide for photocatalytic decolorization of methylene blue. Chemical Engineering Journal 193-194:203-210.

    Mo, J., Zhang, Y., Xu, Q., Lamson, J.J., and Zhao, R., 2009. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment 43(14):2229-2246.

    Muzyka, R., Kwoka, M., Smędowski, Ł., Díez, N., and Gryglewicz, G., 2017. Oxidation of graphite by different modified Hummers methods. New Carbon Materials 32(1):15-20.

    Nakata, K., and Fujishima, A., 2012. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13(3):169-189.

    Olga D'hennezela, P.P., *, David F. Ollisb, 1998. Benzene an toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2. Photochemistry and Photobiology A: Chemistry:197-204.

    Ollis, C.S.T.a.D.F., 1990. Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack. CATALYSIS.

    Padhi, S.K., and Gokhale, S., 2014. Biological oxidation of gaseous VOCs – rotating biological contactor a promising and eco-friendly technique. Journal of Environmental Chemical Engineering 2(4):2085-2102.

    Park, J.-Y., Choi, K.-I., Lee, J.-H., Hwang, C.-H., Choi, D.-Y., and Lee, J.-W., 2013. Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions. Materials Letters 97:64-66.

    Parrino, F., Conte, P., De Pasquale, C., Laudicina, V., Loddo, V., and Palmisano, L., 2017. Influence of Adsorbed Water on the Activation Energy of Model Photocatalytic Reactions. The Journal of Physical Chemistry C 121(4):2258-2267.

    Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O'shea, K., Entezari, M.H., and Dionysiou, D.D., 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental 125:331-349.

    Rahimi, E., Davoodi, A., and Kiani Rashid, A.R., 2018. Characterization of screw dislocation-driven growth in nickel micro-nanostructure electrodeposition process by AFM. Materials Letters 210:341-344.

    Rahimi, N., Pax, R.A., and Gray, E.M., 2016. Review of functional titanium oxides. I: TiO2 and its modifications. Progress in Solid State Chemistry 44(3):86-105.

    Register, F., 2015. TOLUENE Safety Data Sheet.

    Ren, H., Koshy, P., Chen, W.F., Qi, S., and Sorrell, C.C., 2017. Photocatalytic materials and technologies for air purification. J Hazard Mater 325:340-366.

    Reza, K.M., Kurny, A.S.W., and Gulshan, F., 2015. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review. Applied Water Science 7(4):1569-1578.

    Saleem, H., Haneef, M., and Abbasi, H.Y., 2018. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Materials Chemistry and Physics 204:1-7.

    Sauer, T., Cesconeto Neto, G., José, H.J., and Moreira, R.F.P.M., 2002. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry 149(1):147-154.

    Shan, A.Y., Ghazi, T.I.M., and Rashid, S.A., 2010. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Applied Catalysis A: General 389(1-2):1-8.

    Sharotri, N., and Sud, D., 2015. A greener approach to synthesize visible light responsive nanoporous S-doped TiO 2 with enhanced photocatalytic activity. New Journal of Chemistry 39(3):2217-2223.

    Shayegan, Z., Lee, C.-S., and Haghighat, F., 2018. TiO 2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chemical Engineering Journal 334:2408-2439.

    Shi, W., Yang, W., Li, Q., Gao, S., Shang, P., and Shang, J.K., 2012. The synthesis of nitrogen/sulfur co-doped TiO 2 nanocrystals with a high specific surface area and a high percentage of {001} facets and their enhanced visible-light photocatalytic performance. Nanoscale research letters 7(1):590.

    Singaram, B., Varadharajan, K., Jeyaram, J., Rajendran, R., and Jayavel, V., 2017. Preparation of cerium and sulfur codoped TiO2 nanoparticles based photocatalytic activity with enhanced visible light. Journal of Photochemistry and Photobiology A: Chemistry 349:91-99.

    Sleiman, M., Conchon, P., Ferronato, C., and Chovelon, J.-M., 2009. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental 86(3):159-165.

    Sohn, H., and Szekely, J., 1973. A structural model for gas—solid reactions with a moving boundary—IV. Langmuir—Hinshelwood kinetics. Chemical Engineering Science 28(5):1169-1177.

    Soltani, T., and Lee, B.-K., 2017. A benign ultrasonic route to reduced graphene oxide from pristine graphite. Journal of colloid and interface science 486:337-343.

    Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558-1565.

    Stobinski, L., Lesiak, B., Malolepszy, A., Mazurkiewicz, M., Mierzwa, B., Zemek, J., Jiricek, P., and Bieloshapka, I., 2014. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena 195:145-154.

    Su, S., and Hu, J., 2017. Ultrasound Assisted Low-Concentration VOC Sensing. Sensors and Actuators B: Chemical.

    Suave, J., Amorim, S.M., ngelo, J., Andrade, L., Mendes, A., and Moreira, R.F.P.M., 2017. TiO 2 /reduced graphene oxide composites for photocatalytic degradation in aqueous and gaseous medium. Journal of Photochemistry and Photobiology A: Chemistry 348:326-336.

    Suryawanshi, S., Chauhan, A.S., Verma, R., and Gupta, T., 2016. Identification and quantification of indoor air pollutant sources within a residential academic campus. Sci Total Environ 569-570:46-52.

    Szczepanik, B., 2017. Photocatalytic degradation of organic contaminants over clay-TiO 2 nanocomposites: A review. Applied Clay Science 141:227-239.

    Ton, N.N.T., Dao, A.T.N., Kato, K., Ikenaga, T., Trinh, D.X., and Taniike, T., 2018. One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon 133:109-117.

    Tsaiand, C.-W., Chang, C.-T., Chiou, C.-S., Shie, J.-L., and Chang, Y.-M., 2008. Study on the indoor volatile organic compound treatment and performance assessment with TiO2/MCM-41 and TiO2/Quartz photoreactor under ultraviolet irradiation. Journal of the Air & Waste Management Association 58(10):1266-1273.

    Tsaiand, C.-W., Chang, C.-T., Chiou, C.-S., Shie, J.-L., and Chang, Y.-M., 2012. Study on the Indoor Volatile Organic Compound Treatment and Performance Assessment with TiO2/MCM-41 and TiO2/Quartz Photoreactor under Ultraviolet Irradiation. Journal of the Air & Waste Management Association 58(10):1266-1273.

    Tseng, T.K., Lin, Y.S., Chen, Y.J., and Chu, H., 2010. A review of photocatalysts prepared by sol-gel method for VOCs removal. Int J Mol Sci 11(6):2336-2361.

    Vaishnav, V.S., Patel, S.G., and Panchal, J.N., 2015. Development of indium tin oxide thin film toluene sensor. Sensors and Actuators B: Chemical 210:165-172.

    Vincent, G., Marquaire, P.M., and Zahraa, O., 2009. Photocatalytic degradation of gaseous 1-propanol using an annular reactor: kinetic modelling and pathways. J Hazard Mater 161(2-3):1173-1181.

    Vlachokostas, C., Chourdakis, E., Michalidou, A.V., Moussiopoulos, N., Kelessis, A., and Petrakakis, M., 2012. Establishing relationships between chemical health stressors in urban traffic environments: Prediction of toluene concentration levels in European cities. Atmospheric Environment 55:299-310.

    Wang, D., Xiao, L., Luo, Q., Li, X., An, J., and Duan, Y., 2011. Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300 degrees C. J Hazard Mater 192(1):150-159.

    Wang, P., Qi, C., Wen, P., Hao, L., Xu, X., and Agathopoulos, S., 2018. Synthesis of Si, N co-Doped Nano-Sized TiO(2) with High Thermal Stability and Photocatalytic Activity by Mechanochemical Method. Nanomaterials (Basel) 8(5).

    Wang, S., Sun, H., Ang, H.M., and Tadé, M.O., 2013. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chemical Engineering Journal 226:336-347.

    William S. Hummers Jr., R.E.O., 1958. <Preparation of Graphite Oxide.pdf>. American Chemical Society:1339-1339.

    Wu, H., Guo, C., Yin, Z., Quan, Y., and Yin, C., 2018. Performance and bacterial diversity of biotrickling filters filled with conductive packing material for the treatment of toluene. Bioresour Technol 257:201-209.

    Wu, Z., Wu, Q., Du, L., Jiang, C., and Piao, L., 2014. Progress in the synthesis and applications of hierarchical flower-like TiO2 nanostructures. Particuology 15:61-70.

    Xu, Y., Li, Y., Wang, P., Wang, X., and Yu, H., 2018. Highly efficient dual cocatalyst-modified TiO 2 photocatalyst: RGO as electron-transfer mediator and MoS x as H 2 -evolution active site. Applied Surface Science 430:176-183.

    Yadav, H.M., and Kim, J.-S., 2016. Solvothermal synthesis of anatase TiO 2 -graphene oxide nanocomposites and their photocatalytic performance. Journal of Alloys and Compounds 688:123-129.

    Yamamoto, A., Mizuno, Y., Teramura, K., Shishido, T., and Tanaka, T., 2013. Effects of reaction temperature on the photocatalytic activity of photo-SCR of NO with NH3 over a TiO2 photocatalyst. Catalysis Science & Technology 3(7):1771.

    Yang, W.-D., Li, Y.-R., and Lee, Y.-C., 2016. Synthesis of r-GO/TiO2 composites via the UV-assisted photocatalytic reduction of graphene oxide. Applied Surface Science 380:249-256.

    Yang, Z., and Wang, J., 2017. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction. Environ Res 158:105-117.

    Yu, C., Cai, D., Yang, K., Yu, J.C., Zhou, Y., and Fan, C., 2010. Sol–gel derived S,I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. Journal of Physics and Chemistry of Solids 71(9):1337-1343.

    Yu, X., Lin, D., Li, P., and Su, Z., 2017. Recent advances in the synthesis and energy applications of TiO 2 -graphene nanohybrids. Solar Energy Materials and Solar Cells 172:252-269.

    Yu, Z., Di, H., Ma, Y., He, Y., Liang, L., Lv, L., Ran, X., Pan, Y., and Luo, Z., 2015. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings. Surface and Coatings Technology 276:471-478.

    Yurdakul, S., Civan, M., zden, , Gaga, E., Döğeroğlu, T., and Tuncel, G., 2017. Spatial variation of VOCs and inorganic pollutants in a university building. Atmospheric Pollution Research 8(1):1-12.

    Zadi, T., Assadi, A.A., Nasrallah, N., Bouallouche, R., Tri, P.N., Bouzaza, A., Azizi, M.M., Maachi, R., and Wolbert, D., 2018. Treatment of hospital indoor air by a hybrid system of combined plasma with photocatalysis: Case of trichloromethane. Chemical Engineering Journal 349:276-286.

    Zhang, J., Xing, Z., Cui, J., Li, Z., Tan, S., Yin, J., Zou, J., Zhu, Q., and Zhou, W., 2018a. C,N co-doped porous TiO2 hollow sphere visible light photocatalysts for efficient removal of highly toxic phenolic pollutants. Dalton Trans 47(14):4877-4884.

    Zhang, L., Hou, G., Zhai, W., Ai, Q., Feng, J., Zhang, L., Si, P., and Ci, L., 2018b. Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles. Journal of Alloys and Compounds 748:854-860.

    Zhang, P., and Liu, J., 2004. Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study. Journal of Photochemistry and Photobiology A: Chemistry 167(2-3):87-94.

    Zhang, W., Guo, H., Sun, H., and Zeng, R.-C., 2016a. Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO2/graphene composite in photo-generated cathodic protection. Applied Surface Science 382:128-134.

    Zhang, W., He, Y., Zhang, M., Yin, Z., and Chen, Q., 2000. Raman scattering study on anatase TiO2 nanocrystals. Journal of Physics D: Applied Physics 33(8):912.

    Zhang, Y., Zhou, Z., Chen, T., Wang, H., and Lu, W., 2014. Graphene TiO2 nanocomposites with high photocatalytic activity for the degradation of sodium pentachlorophenol. Journal of environmental sciences 26(10):2114-2122.

    Zhang, Z., Li, X., Liu, B., Zhao, Q., and Chen, G., 2016b. Hexagonal microspindle of NH 2-MIL-101 (Fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene. RSC Advances 6(6):4289-4295.

    Zhao, J., and Yang, X., 2003. Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment 38(5):645-654.

    Zheng, Q., and Kim, J.-K., 2015. Synthesis, Structure, and Properties of Graphene and Graphene Oxide.29-94.

    Zhong, L., Brancho, J.J., Batterman, S., Bartlett, B.M., and Godwin, C., 2017. Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation. Applied Catalysis B: Environmental 216:122-132.

    Zhou, K., Zhu, Y., Yang, X., Jiang, X., and Li, C., 2011. Preparation of graphene–TiO 2 composites with enhanced photocatalytic activity. New Journal of Chemistry 35(2):353-359.

    Zhu, Z., Liu, F., and Zhang, W., 2015. Fabricate and characterization of Ag/BaAl2O4 and its photocatalytic performance towards oxidation of gaseous toluene studied by FTIR spectroscopy. Materials Research Bulletin 64:68-75.

    Zoccal, J.V.M., Arouca, F.O., and Gonçalves, J.a.S., Year. of Conference of Conference. Synthesis and Characterization of TiO2 Nanoparticles by the Method Pechini. Materials Science Forum, 2010. Vol. 660, pp. 385-390. Trans Tech Publ.

    Zou, T., Xie, C., Liu, Y., Zhang, S., Zou, Z., and Zhang, S., 2013. Full mineralization of toluene by photocatalytic degradation with porous TiO2/SiC nanocomposite film. Journal of Alloys and Compounds 552:504-510.

    無法下載圖示 校內:2023-06-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE