簡易檢索 / 詳目顯示

研究生: 游騰亮
You, Teng-Liang
論文名稱: 有機高分子太陽能電池之溶劑效應研究
Studies of co-solvent effects in organic polymer solar cells
指導教授: 鄭弘隆
Cheng, Hung-Lung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 90
中文關鍵詞: 有機高分子太陽能電池聚(3-己烷基噻吩)碳六十衍生物溶劑效應
外文關鍵詞: Organic solar cells, Poly (3-hexylthiophene), Fullerene, co-solvent effect
相關次數: 點閱:139下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以聚(3-己烷基噻吩) (Poly (3-hexylthiophene), P3HT)與碳六十衍生物 ( [6,6]- phenyl - C61 – butyric acid methyl ester, PCBM)相互混摻形成單層異質接面結構(bulk-heterojunction)的有機薄膜太陽能電池。利用溶液製程搭配旋轉塗佈方式製作P3HT:PCBM主動層薄膜,進而製備太陽能電池元件,選用氯仿(高揮發性的溶劑)和三氯苯(低揮發性的溶劑)為共溶劑,探討共溶劑比例對太陽能電池元件電性參數的影響,並使用吸收光譜儀、拉曼光譜儀、x-ray 繞射儀與原子力顯微鏡進行主動層薄膜結構與形態學分析,進而探討太陽能電池元件電性參數的關連性。
    研究發現當使用純氯仿為溶劑時,可獲致最佳的太陽能電池元件,能量轉換效率(power conversion efficiency,PCE) 可高於3 %,最大的短路電流(10.73 mA/cm2) 和開路電壓(0.59 V);而加入三氯苯溶劑後,元件的PCE 皆低於2%,短路電流和開路電壓皆隨著三氯苯比例增加而下降,但當使用純三氯苯為溶劑時,則可獲得最大的填充因子(0.51)。顯然地,溶劑的選用與共溶劑的比例,確實嚴重影響P3HT : PCBM太陽能電池元件的性能。
    從UV吸收光譜圖可以發現若僅剩氯仿為溶劑,所製作之主動層薄膜會有最強的吸收效果,且隨著三氯苯在共溶劑中占有的比例變多,吸收強度有逐一變小的趨勢;薄膜微結構的部分,由拉曼光譜分析可以發現,當氯仿所佔有的溶劑比例愈高,其周遭的環境均勻性愈差,表示P3HT和PCBM混摻的愈均勻,P-N接觸面積因而變得更多,電子-電洞對分離的機率也就有所提升,進而獲得較多的光電流;另外,X-ray繞射光譜分析指出,三氯苯對於主動層薄膜於垂直基板的方向上,鏈長和鏈長間的堆疊會有較好的排序,因此當三氯苯在共溶劑中占有的比例愈多將有助於載子在分子間的傳遞;搭配原子力顯微鏡觀察到薄膜表面形態的結果,也指出隨著共溶劑中三氯苯的比例增加,主動層薄膜分子間的排列愈均勻。
    綜合而論,共溶劑中三氯苯溶劑比例較高,薄膜內P3HT高分子鏈的排列較為緊密,有利於載子的傳輸,但不利於電子-電洞對的分離;但對於共溶劑中氯仿溶劑比例較多的情況,薄膜所顯現的特性則正好相反。推論氯仿溶劑比例多的元件,其載子在傳輸的過程中容易因較差的微結構有序性而複合消失,但相對的此微結構型態分離出的電子、電洞也較多,故最後實際接收到的電荷仍然是最多,所顯現元件電特性自然也會是最好的。

    We studied the thin-film structures and photovoltaic properties of poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) organic bulk-heterojunction solar cells. The P3HT:PCBM blended active layers were prepared by solution deposition via a spin-coating technique using chloroform (CF) and 1,3,5-trichlorobenzene (TCB) cosolvents. The effect of the cosolvent concentration on the correlation between the morphology of the active layer and the photovoltaic characteristics of the solar cells were studied.
    For the electrical properties, we found that the solar cells that were created using pure CF as a solvent for depositing the P3HT:PCBM active layers show the best device performance, including a power conversion efficiency (PCE) above 3 %, a short-circuit current density (JSC) as high as 10.73 mA/cm2, and an open-circuit voltage (Voc) of 0.59 V. However, when TCB:CF cosolvents were used to prepare the active layer, all the solar devices exhibited an inferior PCE of below 2%. We observed that the JSC and Voc decreased when the TCB concentration was increased for the cosolvents. The results of our experiment suggest that the cosolvent composition used when preparing P3HT:PCBM active layers played an important role in the development of the photovoltaic characteristics of organic solar cells.
    The P3HT:PCBM active layers were characterized using UV-vis absorption spectroscopy, Raman spectroscopy, x-ray diffraction (XRD), and atomic force microscopy (AFM). The results revealed that an increase in the CF concentration for the cosolvents resulted in films with higher absorbance and better P3HT:PCBM blend homogeneity, thus suggesting the formation of a relatively large amount of excitons and an increased probability of exciton dissociation. This provides a reasonable basis for the higher photocurrent of the solar cells. On the contrary, we also observed an increased crystalline size in the P3HT domains with increasing TCB concentrations, thus reducing the contact between P3HT and PCBM, i.e., creating a smaller p-n junction area.
    In summary, we observed a good correlation between the morphology of the P3HT:PCBM active layer and the electrical properties of the solar cells when utilizing the cosolvent approach. In spite of the decreasing order of the P3HT chains, the PCE of the device created with the CF solvent is larger than that of the device made with them CF:TCB cosolvents. Hence, we suggest that the enhanced absorbance and improved p-n junction contribute to the enhancement of the photocurrent in organic bulk-heterojunction-type solar cells despite the formation of small crystalline domains that could limit the transport of charge carriers.

    摘要................................................................................I Abstract...........................................................................III 致謝..............................................................................V 目次.............................................................................VI 表目錄...........................................................................IX 圖目錄..........................................................................X 第一章 緒論................................................................1 1.1 前言................................................................................1 1.2 太陽能電池種類介紹………………...…………...….3 1.3 有機太陽能電池元件發展…….……………….……..6 1.3.1 單層結構………………………………………………...…6 1.3.2 P-N雙層異質接面結構…………………………..….....…6 1.3.3 P-N混摻單層異質接面結構………………..………….....7 1.3.4 串接結構…………………................................................10 1.4 研究動機………………………….…………………..12 第二章 有機太陽能電池原理………………………15 2.1 有機太陽能電池工作機制…………………………15 2.2 有機太陽能電池等效電路………………….……...17 2.3 有機太陽能電池各項參數介紹……………….…...20 2.3.1 開路電壓…………………………………....….……..…20 2.3.2 短路電流………………………………...................….…20 2.3.3 填充因子………………………………….……….…..…21 2.3.4 轉換效率………………………………………….....…...21 2.4 太陽光的頻譜………………………………...…….22 第三章 實驗方法和步驟……………………………28 3.1 實驗材料…………………………………..……..…28 3.2 元件製作流程……………………………..………..31 3.3 實驗分析儀器…..………………………………..…35 第四章 不同混合比例的溶劑效應對P3HT:PCBM有機太陽能電池之研究....................................39 4.1 前言…………………………………………………39 4.2 元件光電特性..…………………………..…..……..42 4.3 紫外光-可見光光譜分析………………..….…........44 4.3.1 吸收光譜薄膜分析………………….………..….……44 4.3.2 吸收光譜薄膜分析之擬合後光譜分析…..........….….45 4.4 拉曼光譜分析…………………………………...….49 4.4.1 拉曼光譜薄膜分析…………..…….……………….....49 4.4.2 拉曼光譜薄膜分析之相減光譜……………….…..….51 4.4.3 拉曼光譜薄膜分析之環境均勻性………………...….52 4.5 X光繞射光譜分析………………..……….…..…....54 4.6 原子力顯微鏡表面結構型態分析……………........57 第五章 總結與未來展望.…………………………...81 5.1 總結…………………………………..……….…….81 5.2 未來展望…………………………………………....83 參考文獻………………………….………………….……….86

    [1] V. Y. Merritt and H. J. Hovel, “Organic solar cells of hydroxyl squarylium” Appl. phys. Lett. 29, p.414, 1976.

    [2] A. K. Ghosh and T. Feng, “Merocyanine organic solar cells” J. Appl. Phys. 49, p.5982, 1978.

    [3] C. W. Tang, “Two-layer organic photovoltaic cell” Appl. Phys. Lett. 48, p.183, 1986.

    [4] P. Peumans, V. Bulović and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes” Appl. Phys. Lett. 76, p.2650, 2000.

    [5] P. Peumans, and S. R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells” Appl. Phys. Lett. 79, p.126, 2001.

    [6] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene” Science 258, p.1474, 1992.

    [7] G. Yu, J. Gao, J. Hummelen, F. Wudl and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions” Science 270, p.1789, 1995.

    [8] C. J. Brabec, S. E. Shaheen, C. Winder and N. S. Sariciftci, “Effect of LiF/metal electrodes on the performance of plastic solar cells” Appl. Phys. Lett. 80, p.1288, 2002.

    [9] F. Padinger, R. S. Rittberger and N. S. Sariciftci,”Effects of postproduction treatment on plastic solar cells” Adv. Funct. Mater. 13, p.85, 2003.

    [10] D. Chirvase, J. Parisi, J. C. Hummelen and V. Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites” Nanotechnology 15, p.1317, 2004.

    [11] W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, “Thermally stable,efficient polymer solar cells with nanoscale control of the interpenetrating network morphology” Adv. Funct. Mater. 15, p.1617, 2005.

    [12] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols” Nat. Mater. 6, p.497, 2007.

    [13] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%” Nat. Photonics 3, p.297, 2009.

    [14] H.-Y. Chen, J. Hou1, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency” Nat. Photonics 3, p.649, 2009.

    [15] G. Dennler, H.-J. Prall, R. Koeppe, M. Egginger,R. Autengruber and N. S. Sariciftci, “Enhanced spectral coverage in tandem organic solar cells” Appl. Phys. Lett. 89, p.73502, 2006.

    [16] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. -Q. Nguyen, M. Dante and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing” Science 317, p.222, 2007.

    [17] S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, Gang Li and Y. Yang, “Highly efficient tandem polymer photovoltaic cells” Adv. Mater. 22, p.380, 2010.

    [18] Dipl. Ing. Klaus Petritsch, “Organic Solar Cell Architectures” PhD Thesis, 2000.

    [19] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells” J. Appl. Phys. 94,p.6849, 2003.

    [20] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells” Adv. Fun. Mater. 11, p.374, 2001.

    [21] Photovoltaics CDROM, (http://pvcdrom.pveducation.org/index.html)

    [22] S. O. Kasap, Optoelectronics and Photonics Principles and Practices, Addison Wesley, 2001, Chapter 6.

    [23] J.-H. Huang, Z.-Y. Ho, D. Kekuda, Y. Chang, C.-W. Chu and K.-C. Ho, “Effects of nanomorphological changes on the performance of solar cells with blends of poly[9,9-dioctyl-fluoreneco-bithiophene] and a soluble fullerene” Nanotechnology 20, p.025202, 2009.

    [24] J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch and H. Sirringhaus, “Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents” Chem. Mater. 16, p.4772, 2004.

    [25] Z. Bao, A. Dodabalapur and A. J. Lovinger “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility” Appl. Phys. Lett. 69, p.4108, 1996.

    [26] A. Keawprajak, P. Piyakulawat, A. Klamchuen, P. Iamraksa and U. Asawapirom, “Influence of crystallizable solvent on the morphology and performance of P3HT : PCBM bulk-heterojunction solar cells” Sol. Energy Mater. Sol. Cells 94, p.531, 2010.

    [27] K. Kawano, J. Sakai, M. Yahiro and C. Adachi, “Effect of solvent on fabrication of active layers in organic solar cells based on poly (3-hexylthiophene) and fullerene derivatives” Sol. Energy Mater. Sol. Cells 93, p.514, 2009.

    [28] S.-H.Jin, B. V. K. Naidu, H.-S. Jeon, S.-M. Park, J.-S. Park,S. C. Kim, J. W. Lee and Y.-S. Gal, “Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT: PCBM system” Sol. Energy Mater. Sol. Cells 91, p.1187, 2007.

    [29] C. Zhang, S. W. Tong, C. Jiang, E. T. Kang, D. S. H. Chan and C. Zhu, “Simple tandem organic photovoltaic cells for improved energy conversion efficiency” Appl. Phys. Lett. 92, p.083310, 2008.

    [30] G. Wang, J. Swensen, D. Moses and A. J. Heeger, “Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistors” J. Appl. Phys. 93, p.6137, 2003.

    [31] P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus and R. H. Friend, “Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene)” Phys. Rev. B 67, p.064203, 2003.

    [32] F. C. Spano, “Absorption in regio-regular poly(3-hexyl)thiophene thin films : Fermi resonances, interband coupling and disorder” Chem. Phys. Lett. 325, p.22, 2005.

    [33] J. Clark, J.-F. Chang, F. C. Spano, R. H. Friend and C. Silva, “Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy” Appl. Phys. Lett. 94, p.163306, 2009.

    [34] M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant and I. Baltog, “SERS spectra of poly(3-hexylthiophene) in oxidized and unoxidized states” J. Raman. Spectrosc. 29, p.825, 1998.

    [35] J.-J. Yun, J. Peet, N.-S. Cho, G. C. Bazan, S. J. Lee and M. Moskovits, “Insight into the raman shifts and optical absorption changes upon annealing polymer/fullerene solar cells” Appl. Phys. Lett. 92, p.251912, 2008.

    [36] A. Sakamoto, Y. Furukawa and M. Tasumi, “Infrared and raman studies of poly(ppheny1enevinylene) and it’s model compounds” J. Phys. Chem. 96, p.1490, 1992.

    [37] H.-L. Cheng, J.-W. Lin, M.-F. Jang, F.-C. Wu, W.-Y. Chou, M.-H. Chang and C.-H. Chao, “Long-term operations of polymeric thin-film transistors: electric-field-induced intrachain order and charge transport enhancements of conjugated poly(3-hexylthiophene)” Macromolecules 42, p.8251, 2009.

    [38] R. österbacka, C. P. An, X. M. Jiang and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals” Science. 287, p.839, 2000.

    [39] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stühn, P. Schilinsky, C. Waldauf and C. J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells”Adv. Fun. Mater. 15, p.1193, 2005.

    [40] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-S. Ha and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells” Nat. Mater. 5, p.197, 2006.

    [41] H.-L. Cheng, W.-Q. Lin and F.-C. Wu, “Effects of solvents and vacancies on the electrical hysteresis characteristics in regioregular poly(3-hexylthiophene) organic thin-film transistors” Appl. Phys. Lett. 94, p.223302, 2009.

    下載圖示 校內:2012-08-20公開
    校外:2013-08-20公開
    QR CODE