簡易檢索 / 詳目顯示

研究生: 胡世頡
Hu, Shih-Jei
論文名稱: 不同奈米碳材對鋁氫化鈉放氫行為的影響研究
Catalytic Effects of Various Nano-Carbon Materials on the Dehydrogenation Behavior of Sodium Alanate
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 95
中文關鍵詞: 鋁氫化鈉多壁奈米碳管石墨烯放氫反應臨場同步X光繞射分析
外文關鍵詞: sodium alanate, multi-walled carbon nanotubes, graphene, dehydrogenation, in-situ synchrotron XRD
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以多壁奈米碳管 (MWCNTs)、石墨烯薄片 (GnP)、碳60 (C60)進行原材鋁氫化鈉 (NaAlH4)的改質,探討並比較NaAlH4經奈米碳材改質後的釋氫性質。研究中所使用之NaAlH4擁有高理論重量氫密度7.4 wt%,起始釋氫溫度約210 oC,利用奈米碳材的表面陰電性與NaAlH4間產生交互作用,改善NaAlH4釋氫溫度、釋氫量和釋氫速率等熱放氫性質。實驗以機械球磨法將NaAlH4和奈米碳材均勻混合,利用高壓熱重分析儀 (HPTGA)測定經碳材改質後NaAlH4的熱放氫性質,並藉由臨場同步X光繞射技術 (in-situ synchrotron XRD)探討碳材對NaAlH4在放氫過程中的反應機構。
    結果顯示,MWCNTs、GnP、C60對 NaAlH4之二階段放氫反應有不同程度的影響。對於MWCNTs而言,其角色主要在於降低NaAlH4的起始釋氫溫度,隨添加量增加從原材的206 oC降低至136 oC,為三者碳材中最佳;而對於GnP而言,其球磨後的結構和MWCNTs類似造成相似的放氫行為,然而催化效果略低於MWCNTs;C60之催化效果為三種奈米碳材中最佳,可以增加NaAlH4的第一步驟反應速率並降低第二步驟的分解溫度,當添加量達15 wt%以上時,NaAlH4的第二階段放氫溫度幾乎和第一階段的溫度重疊。
    In-situ XRD的結果顯示C60會參與NaAlH4的放氫反應而生成Na6C60,使NaAlH4的第二階段反應提前至較低溫發生,顯示C60的高表面陰電性有助於減弱Al-H鍵結的強度,降低NaAlH4之脫氫能;相較於MWCNTs和GnP則不參與NaAlH4的放氫過程。此外,奈米碳材會縮短NaAlH4液化的溫度區間,造成MWCNTs/ NaAlH4的放氫速率較純NaAlH4緩慢。最後,本研究亦嘗試結合C60和MWCNTs的效果,結果顯示C60對促進NaAlH4放氫速率扮演最重要的角色,由不同複合碳材添加量條件,顯示MWCNTs主導NaAlH4的第一階段放氫溫度,而C60則是主導第二階段放氫溫度。綜合上述結果,三種類型的奈米碳催化能力由大而小依序為:C60> MWCNTs≧ GnP。

    In this study, the roles of multi-walled carbon nanotubes (MWCNTs), graphene nanoplatelets (GnP) and fullerene (C60) addition on the dehydrogenation reaction of sodium alanate (NaAlH4) are investigated and compared. Thermal gravimetric analysis (TGA) was employed to determine the amount of hydrogen desorption and the on-set of dehydrogenation temperature. The reaction mechanism of C60/ NaAlH4 during heating was analyzed by employing in-situ synchrotron X-ray diffraction (XRD) technique. The TGA results showed that at 15 wt% addition, C60 was more effective in catalyzing hydrogen desorption reaction from NaAlH4, as compared with MWCNTs and graphene. The electron affinity of different carbon materials played important role for H-removal and the corresponding dehydrogenation reaction. The in-situ synchrotron XRD results indicated that C60 participated in the dehydrogenation reaction, which altered the reaction path of pure NaAlH4. The order of catalytic ability of three types of nano-carbon materials was: C60>MWCNTs≧GnP.

    摘要 I Extended Abstract III 誌謝 IX 總目錄 X 表目錄 XIII 圖目錄 XIV 一、前言 1 二、研究背景及文獻回顧 8 2-1 能源問題及氫能發展背景 8 2-2 氫儲存技術的發展 9 2-2-1 氣態高壓儲氫 9 2-2-2 液態儲氫 10 2-2-3 固態式儲氫 10 2-2-4 化學儲氫材料 12 2-2-5 吸附型儲氫材料 13 2-3 鋁氫化鈉之基本性質 13 2-4 鋁氫化鈉之碳材改質研究 15 2-5 碳材陰電性理論 17 三、研究方法與實驗步驟 31 3-1 鋁氫化鈉-奈米碳材混合粉體之製備 31 3-2 材料基本特性分析 32 3-2-1 微觀結構分析 32 3-2-2 結晶結構分析 32 3-3 臨場同步X光繞射分析 32 3-4 熱重分析 33 四、結果與討論 37 4-1 NaAlH4-奈米碳材混合粉體之基本性質分析 37 4-1-1 NaAlH4-奈米碳材混合粉體的結晶結構 37 4-1-2 NaAlH4-奈米碳材混合粉體的形貌觀察 37 4-1-3 奈米碳材的結構對其陰電性之影響 38 4-2奈米碳管、石墨烯、碳60對NaAlH4放氫行為的比較 39 4-2-1 放氫溫度 39 4-2-2 放氫量 41 4-2-3 放氫速率 42 4-3 碳材添加量對NaAlH4放氫行為之影響 44 4-3-1 奈米碳管 44 4-3-2 石墨烯 45 4-3-3 碳60 45 4-4 奈米碳材種類對NaAlH4放氫反應機構之影響 46 4-4-1 原材NaAlH4之放氫過程 46 4-4-2 MWCNTs/ NaAlH4之放氫過程 47 4-4-3 GnP/ NaAlH4之放氫過程 47 4-4-4 C60/ NaAlH4之放氫過程 48 4-4-5 奈米碳材對NaAlH4固/液相變化的影響 50 4-5 碳60-奈米碳管複合碳材對NaAlH4放氫行為之影響 51 五、結論 86 參考文獻 88

    [1] M. Conte, A. Iacobazzi, M. Ronchetti, R. Vellone, "Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives", J Power Sources, 100 (2001) 171-187.
    [2] U.S. DOE, "Carbon sequestration", February 1999, from https://www.netl.doe.gov/publications/press/1999/seqrpt.pdf.
    [3] N. Nakicenovic, "Energy perspectives for Eurasia and the Kyoto Protocol", IIASA Interim Report IR-98-67, (1998).
    [4] A. Zuttel, A. Remhof, A. Borgschulte, O. Friedrichs, "Hydrogen: the future energy carrier", Philosophical Transactions of the Royal Society A, 368 (2010) 3329-3342.
    [5] K. Hirose, "Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research", Faraday Discussions,151 (2011)11-18.
    [6] U.S. DOE, "Multi-Year Research, Development and Demonstration Plan”, 3.3 hydrogen storage, 2015, from http://energy.gov/sites/prod/files/2015/05/f22/fcto_myrdd_storage.pdf.
    [7] P.A. Berseth, A.G. Harter, R. Zidan, A. Blomqvist, C.M. Araujo, R.H. Scheicher, R. Ahuja, P. Jena, "Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4", Nano Lett, 9 (2009) 1501-1505.
    [8] 陳子騰,添加劑對鋁氫化鈉吸氫及放氫性質影響之研究,國立成功大學材料科學及工程學系碩士論文,(民103年7月)。
    [9] T.T. Chen, C.H. Yang, W.T. Tsai, "In-situ synchrotron X-ray diffraction study on the dehydrogenation behavior of NaAlH4 modified by multi-walled carbon nanotubes", Int J Hydrogen Energ, 37 (2012) 14285-14291.
    [10] 柯賢文,未來的氫能經濟,科學發展月刊,399 (2006年3月)。
    [11] U. Eberle, M. Felderhoff, F. Schuth, "Chemical and physical solutions for hydrogen storage", Angew Chem Int Edit, 48 (2009) 6608-6630.
    [12] A. Kalanidhi, "Boil-off in long-term stored liquid-hydrogen", Int J Hydrogen Energ, 13 (1988) 311-313.
    [13] R.K. Ahluwalia, T.Q. Huaa, J.K. Peng, S. Lasher, K. McKenney, J. Sinha, M. Gardiner, "Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications", Int J Hydrogen Energ, 35 (2010) 4171-4184.
    [14] G. Principi, F. Agresti, A. Maddalena, S. Lo Russo, "The problem of solid state hydrogen storage", Energy, 34 (2009) 2087-2091.
    [15] J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, "High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery", Chem Soc Rev, 39 (2010) 656-675.
    [16] R. Gupta, F. Agresti, S. Lo Russo, A. Maddalena, P. Palade, G. Principi, "Structure and hydrogen storage properties of MgH2 catalysed with La2O3", J Alloy Compd, 450 (2008) 310-313.
    [17] J. Huot, I. Swainson, R. Schulz, "Phase transformation in magnesium hydride induced by ball milling", Ann Chim-Sci Mat, 31 (2006) 135-144.
    [18] S.A. Jin, Y.S. Lee, J.H. Shim, Y.W. Cho, "Reversible hydrogen storage in LiBH(4)-MH(2) (M = Ce, Ca) composites", J Phys Chem C, 112 (2008) 9520-9524.
    [19] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, "Metal hydride materials for solid hydrogen storage: A review", Int J Hydrogen Energ, 32 (2007) 1121-1140.
    [20] I.P. Jain, P. Jain, A. Jain, "Novel hydrogen storage materials: A review of lightweight complex hydrides", J Alloy Compd, 503 (2010) 303-339.
    [21] W. Grochala, P.P. Edwards, "Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen", Chem Rev, 104 (2004) 1283-1315.
    [22] H. Reule, M. Hirscher, A. Weisshardt, H. Kronmuller, "Hydrogen desorption properties of mechanically alloyed MgH2 composite materials", J Alloy Compd, 305 (2000) 246-252.
    [23] P. de Rango, A. Chaise, J. Charbonnier, D. Fruchart, M. Jehan, P. Marty, S. Miraglia, S. Rivoirard, N. Skryabina, "Nanostructured magnesium hydride for pilot tank development", J Alloy Compd, 446 (2007) 52-57.
    [24] 楊政賢,鋁氫化鎂儲氫材料的釋氫行為與性質改善研究,國立成功大學材料科學及工程學系博士論文,(民101年)。
    [25] 潘冠伶,液態鋁氫化鈉放氫行為之研究,國立成功大學材料科學及工程學系碩士論文,(民103年7月)。
    [26] 許維哲,添加劑對鋁氫化鋰放氫行為影響之研究,國立成功大學材料科學及工程學系碩士論文,(民102年七月)。
    [27] C.H. Yang, T.T. Chen, W.T. Tsai, "Synergistic hydrogen desorption behavior of magnesium aluminum hydride synthesized by mechano-chemical activation method", J Alloy Compd, 525 (2012) 126-132.
    [28] C.H. Yang, T.T. Chen, W.T. Tsai, B.H. Liu, "In situ synchrotron X-ray diffraction study on the improved dehydrogenation performance of NaAlH4-Mg(AlH4)(2) mixture", J Alloy Compd, 577 (2013) 6-10.
    [29] W.C. Hsu, C.H. Yang, W.T. Tsai, "Catalytic effect of MWCNTs on the dehydrogenation behavior of LiAlH4", Int J Hydrogen Energ, 39 (2014) 927-933.
    [30] W.C. Hsu, C.H. Yang, C.Y. Tan, W.T. Tsai, "In situ synchrotron X-ray diffraction study on the dehydrogenation behavior of LiAlH4-MgH2 composites", J Alloy Compd, 599 (2014) 164-169.
    [31] C.Y. Tan, W.T. Tsai, "Effects of TiCl3-decorated MWCNTs addition on the dehydrogenation behavior and stability of LiAlH4", Int J Hydrogen Energ, 39 (2014) 20038-20044.
    [32] A. Staubitz, A.P.M. Robertson, I. Manners, "Ammonia-borane and related compounds as dihydrogen sources", Chem Rev, 110 (2010) 4079-4124.
    [33] T. Umegaki, J.M. Yan, X.B. Zhang, H. Shioyama, N. Kuriyama, Q. Xu, "Boron- and nitrogen-based chemical hydrogen storage materials", Int J Hydrogen Energ, 34 (2009) 2303-2311.
    [34] L.J. Murray, M. Dinca, J.R. Long, "Hydrogen storage in metal-organic frameworks", Chem Soc Rev, 38 (2009) 1294-1314.
    [35] K. Sumida, M.R. Hill, S. Horike, A. Dailly, J.R. Long, "Synthesis and hydrogen storage properties of Be-12(OH)(12)(1,3,5-benzenetribenzoate)(4)", J Am Chem Soc, 131 (2009) 15120-15121.
    [36] E.C. Ashby, J.J. Lin, "Selective reduction of alkenes and alkynes by reagent lithium aluminum hydride transition-metal halide", J. Org. Chem., 43 (1978) 2567-2572.
    [37] A.E. Finholt, A.C. Bond, K.E. Wilzbach, H.I. Schlesinger, "The preparation and some properties of hydrides of elements of the 4th group of the periodic system and of their organic derivatives", J Am Chem Soc, 69 (1947) 2692-2696.
    [38] E.C. Ashby, H.E. Redman, G.J. Brendel, "Direct synthesis of complex metal hydrides", Inorg Chem, 2 (1963) 499-504.
    [39] T.N. Dymova, Y.M. Dergachev, V.A. Sokolov, N.A. Grechanaya, "Pressure of NaAlH4 and Na3AlH6 dissociation", Doklady Akademii Nauk SSSR, 224 (1975) 591-592.
    [40] J.W. Lauher, D. Dougherty, P.J. Herley, "Sodium tetrahydroaluminate", Acta Crystallogr B, 35 (1979) 1454-1456.
    [41] Z. Ma, M.Y. Chou, "First-principles investigation of sodium and lithium alloyed alanates", J Alloy Compd, 479 (2009) 678-683.
    [42] B. Bogdanovic, R.A. Brand, A. Marjanovic, M. Schwickardi, J. Tolle, "Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials", J Alloy Compd, 302 (2000) 36-58.
    [43] B. Bogdanovic, M. Schwickardi, "Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials", J Alloy Compd, 253 (1997) 1-9.
    [44] K.J. Gross, S. Guthrie, S. Takara, G. Thomas, "In-situ X-ray diffraction study of the decomposition of NaAlH4", J Alloy Compd, 297 (2000) 270-281.
    [45] C.M. Jensen, R. Zidan, N. Mariels, A. Hee, C. Hagen, "Advanced titanium doping of sodium aluminum hydride: segue to a practical hydrogen storage material ?", Int J Hydrogen Energ, 24 (1999) 461-465.
    [46] A. Zaluska, L. Zaluski, J.O. Strom-Olsen, "Sodium alanates for reversible hydrogen storage", J Alloy Compd, 298 (2000) 125-134.
    [47] D. Pukazhselvan, B.K. Gupta, A. Srivastava, O.N. Srivastava, "Investigations on hydrogen storage behavior of CNT doped NaAlH4", J Alloy Compd, 403 (2005) 312-317.
    [48] F.E. Pinkerton, "Comparison of hydrogen cycling kinetics in NaAlH4-carbon aerogel composites synthesized by melt infusion or ball milling", J Alloy Compd, 509 (2011) 8958-8964.
    [49] Y. Chen, P. Wang, C. Liu, H.M. Cheng, "Improved hydrogen storage performance of Li-Mg-N-H materials by optimizing composition and adding single-walled carbon nanotubes", Int J Hydrogen Energ, 32 (2007) 1262-1268.
    [50] P.J. Wang, Z.Z. Fang, L.P. Ma, X.D. Kang, P. Wang, "Effect of SWNTs on the reversible hydrogen storage properties of LiBH4-MgH2 composite", Int J Hydrogen Energ, 33 (2008) 5611-5616.
    [51] C.Z. Wu, P. Wang, X. Yao, C. Liu, D.M. Chen, G.Q. Lu, H.M. Cheng, "Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride", J Alloy Compd, 414 (2006) 259-264.
    [52] A. Bhatnagar, S.K. Pandey, V. Dixit, V. Shukla, R.R. Shahi, M.A. Shaz, O.N. Srivastava, "Catalytic effect of carbon nanostructures on the hydrogen storage properties of MgH2-NaAlH4 composite", Int J Hydrogen Energ, 39 (2014) 14240-14246.
    [53] J. Wang, A.D. Ebner, T. Prozorov, R. Zidan, J.A. Ritter, "Effect of graphite as a co-dopant on the dehydrogenation and hydrogenation kinetics of Ti-doped sodium aluminum hydride", J Alloy Compd, 395 (2005) 252-262.
    [54] L.H. Kumar, B. Viswanathan, S.S. Murthy, "Dehydriding behaviour of LiAIH4 - the catalytic role of carbon nanofibres", Int J Hydrogen Energ, 33 (2008) 366-373.
    [55] R.R. Shahi, A. Bhatnagar, S.K. Pandey, V. Dixit, O.N. Srivastava, "Effects of Ti-based catalysts and synergistic effect of SWCNTs-TiF3 on hydrogen uptake and release from MgH2", Int J Hydrogen Energ, 39 (2014) 14255-14261.
    [56] C. Cento, P. Gislon, M. Bilgili, A. Masci, Q. Zheng, P.P. Prosini, "How carbon affects hydrogen desorption in NaAlH4 and Ti-doped NaAlH4", J Alloy Compd, 437 (2007) 360-366.
    [57] C.P. Balde, B.P.C. Hereijgers, J.H. Bitter, K.P. de Jong, "Facilitated hydrogen storage in NaAlH4 supported on carbon nanoribers", Angew Chem Int Edit, 45 (2006) 3501-3503.
    [58] P. Adelhelm, J.B. Gao, M.H.W. Verkuijlen, C. Rongeat, M. Herrich, P.J.M. van Bentum, O. Gutfleisch, A.P.M. Kentgens, K.P. de Jong, P.E. de Jongh, "Comprehensive study of melt infiltration for the synthesis of NaAlH4/C nanocomposites", Chem Mater, 22 (2010) 2233-2238.
    [59] J.A. Teprovich, D.A. Knight, M.S. Wellons, R. Zidan, "Catalytic effect of fullerene and formation of nanocomposites with complex hydrides: NaAlH4 and LiAlH4", J Alloy Compd, 509 (2011) S562-S566.
    [60] Y.T. Li, F. Fang, H.L. Fu, J.M. Qiu, Y. Song, Y.S. Li, D.L. Sun, Q.G. Zhang, L.Z. Ouyang, M. Zhu, "Carbon nanomaterial-assisted morphological tuning for thermodynamic and kinetic destabilization in sodium alanates", J Mater Chem A, 1 (2013) 5238-5246.
    [61] Z. Qian, M.S.L. Hudson, H. Raghubanshi, R.H. Scheicher, "Excellent catalytic effects of graphene nanofibers on hydrogen release of sodium alanate", Journal of Physical Chemistry C, 116 (2012) 10861-10866.
    [62] Adelhelm, "The impact of carbon materials on the hydrogen storage properties of light metal hydrides", (2010).
    [63] M.S. Wellons, "Novel catalytic effects of fullerene for LiBH4 hydrogen uptake and release", (2009).
    [64] L. George, S.K. Saxena, "Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: A review", Int J Hydrogen Energ, 35 (2010) 5454-5470.
    [65] L. Schlapbach, A. Zuttel, "Hydrogen-storage materials for mobile applications", Nature, 414 (2001) 353-358.
    [66] P. Pokharel, H. Bae, J.G. Lim, K.Y. Lee, S. Choi, "Effects of titanate treatment on morphology and mechanical properties of graphene nanoplatelets/high density polyethylene nanocomposites", J. Appl. Polym. Sci., 132 (2015).
    [67] V. Causin, C. Marega, A. Marigo, G. Ferrara, A. Ferraro, "Morphological and structural characterization of polypropylene/conductive graphite nanocomposites", Eur Polym J, 42 (2006) 3153-3161.
    [68] J.F. Mao, Z.P. Guo, H.K. Liu, "Enhanced hydrogen storage properties of NaAlH4 co-catalysed with niobium fluoride and single-walled carbon nanotubes", Rsc Adv, 2 (2012) 1569-1576.
    [69] H. Yao, S. Isobe, Y.M. Wang, N. Hashimoto, S. Ohnuki, "Transmission electron microscopic observations of the decomposition process of lithium alanate", Int J Hydrogen Energ, 38 (2013) 3689-3694.

    下載圖示 校內:2017-08-07公開
    校外:2017-08-07公開
    QR CODE