簡易檢索 / 詳目顯示

研究生: 蘇奕文
Su, Yi-Wen
論文名稱: 從公共工程發包政策探討導入營建機器人之誘因機制——以臺灣火力發電廠工程為例
A Policy-Oriented Analysis of Incentive Mechanisms for Integrating Construction Robotics into Public Infrastructure: A Case Study of Thermal Power Plant Projects in Taiwan
指導教授: 馮重偉
Feng , Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 113
中文關鍵詞: 施工自動化公共工程最有利標政府採購風險管理機器人施工誘因機制
外文關鍵詞: Construction Automation, Public Works, Most Advantageous Tender, Government Procurement, Risk Management, Robotic Construction , Incentive Mechanisms
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討臺灣公共工程採購制度如何因應施工自動化技術(例如機器人設備)之導入,並分析現行法規與契約制度所存在的障礙,進一步提出增加誘因機制的策略。研究首先回顧數位轉型背景與國內外施工自動化發展現況,並結合工項分類方法,辨識具備導入潛力之工程作業,初步聚焦於勘查、製造與拆除三大類型。接續構建「施工機器人導入之發包模式」,整合技術評選、契約條款與風險管理三大面向,並以大潭電廠抽水機房工程進行模擬驗證,評估自動化導入之可行性與制度相容性。研究結果顯示,在「最有利標」評選制度中增設自動化技術評分項目,可有效提高創新廠商的中標機率;契約面若能明訂租賃方式、維護保固、操作責任及誘因條款,將有助於降低風險與成本障礙,並促進施工自動化的採用。
    最後,本研究提出短期評選與契約面調整建議,以及中長期示範專案與風險共擔機制之制度建構策略,期能作為我國推動營建產業數位轉型之政策參考。

    This study aims to explore how Taiwan’s public works procurement system can accommodate the integration of construction automation technologies, such as robotic equipment, and to analyze the existing legal and contractual barriers while proposing strategies to enhance incentive mechanisms. The research first reviews the background of digital transformation and the development status of construction automation in Taiwan and abroad. It then applies a work classification approach to identify construction tasks with high automation potential, with an initial focus on three categories: exploration, fabrication, and demolition. Subsequently, a “procurement model for integrating construction robots” is developed, incorporating three key aspects: technical evaluation, contractual arrangements, and risk management. Using the Datan Combined-Cycle Power Plant Circulating Water Pump House Project as a case study, the model is validated through simulation to assess the feasibility and institutional compatibility of automation adoption. The results indicate that introducing an automation technology evaluation item into the “Most Advantageous Tender” selection criteria can effectively increase the success rate of innovative contractors. Furthermore, explicitly specifying leasing arrangements, maintenance and warranty terms, operational responsibilities, and incentive provisions in contracts can help reduce risks and cost barriers, thereby promoting the adoption of construction automation.
    Finally, this study proposes short-term recommendations for tender evaluation and contractual adjustments, as well as medium- to long-term strategies for demonstration projects and risk-sharing mechanisms, with the goal of serving as a policy reference for promoting the digital transformation of Taiwan’s construction industry.

    口試委員審定書 I 中文摘要 III Abstract IV 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄  XII 第一章 緒論 1 第一節 研究背景與動機 1 第一項 營建業面臨議題 3 第一項 營建業自動化法規現況 4 第二節 研究目的 5 第三節 研究範圍與限制 7 第四節 研究流程 7 第五節 論文結構 9 第二章 文獻回顧 11 第一節 問題陳述 12 第二節 營建自動化之發展脈絡與應用限制 13 第一項 營建自動化:人機協作六層級分類架構 14 第二項 營建自動化:機器人性能分類 15 第三項 施工任務分類與技術性需求分析 16 第三節 營建機器人應用案例 18 第一項 高空測繪與渠道空間檢修應用 18 第二項 鋼筋綁紮與砌磚作業 23 第三項 自動焊接 27 第四節 臺灣營建自動化與人機協作相關法規與標準分析 31 第一項 現行採購制度概況 31 第二項 國際技術標準參考:ISO 10218系列 32 第三項 臺灣營建自動化發展歷程與法規制度回顧 33 第四項 近年政策推動 34 第五項 制度優化建議與法制強化方向 34 第五節 文獻回顧總結 35 第三章 營建工地作業與應用自動化機器人之分析 37 第一節 工程案例簡述 38 第二節 研究方法架構與作業分類原則 40 第三節 營建工地作業特性與研究分類基礎 41 第一項 勘查作業特性與自動化應用潛力分析 42 第一目 室外作業特性 43 第二目 室內作業特性 45 第二項 製造作業特性與自動化應用潛力分析 46 第一目 預製工作 46 第二目 場製室外工作 47 第三項 拆除作業特性與自動化應用潛力分析 49 第四節 作業類型與技術對應性總結 51 第四章 促進導入營建機器人之發包模式 53 第一節 發包流程適用性分析 54 第一項 現行法規參考與分析 55 第二項 臺灣與國外導入自動化施工之法規比較分析 57 第三項 發包制度技術導入潛力與推動策略建議 59 第二節 技術化契約條款適配性導入策略 60 第一項 現行工程採購契約設計分析 61 第二項 臺灣與國外導入自動化施工之契約條款比較分析 63 第三項 日租、維保、作業責任等條款設計要點 65 第四項 契約增訂策略與國際比較 69 第三節 制度面規劃與契約結構整合分析 70 第一項 最有利標評選機制構想 71 第二項 公共工程契約條款調整與風險管理 76 第三項 法規制度與契約結構整合分析 80 第四節 模擬驗證機制設計 83 第一項 模擬案例設定與工項條件分析 84 第二項 發包評分項目模擬與指標建議 85 第三項 施工自動化導入效益比較:以傳統工法為對照基準 86 第五章 結論與建議 89 第一節 研究結論 90 第二節 短期推動建議 91 第三節 中長期制度完善策略 92 第四節 政策法規的適應性 94 第五節 結語 95 參考文獻 98

    英文文獻
    [1] Ang, K. C. S., Sankaran, S., & Liu, D. (2024). Sociotechnical considerations on developing human robot teaming solutions for construction: a case study. Construction Robotics, 8(2). <https://doi.org/10.1007/s41693-024-00140-y>
    [2] Bock, T. (2015). The future of construction automation: Technological disruption and the upcoming ubiquity of robotics. Automation in Construction, 59, 113–121. <https://doi.org/10.1016/j.autcon.2015.07.022>
    [3] Liang, C.-J., Wang, X., Kamat, V. R., & Menassa, C. C. (2021). Human–Robot Collaboration in Construction: Classification and Research Trends. Journal of Construction Engineering and Management, 147(10).<https://doi.org/10.1061/(asce)co.1943-7862.0002154>
    [4] Liang, C.-J., Kamat, V. R., & Menassa, C. C. (2020). Teaching robots to perform quasi-repetitive construction tasks through human demonstration. Automation in Construction, 120, 103370. <https://doi.org/10.1016/j.autcon.2020.103370>
    [5] Zhang, M., Xu, R., Wu, H., Pan, J., & Luo, X. (2023). Human–robot collaboration for on-site construction. Automation in Construction, 150, 104812. <https://doi.org/10.1016/j.autcon.2023.104812>
    [6] Vähä, P., Heikkilä, T., Kilpeläinen, P., Järviluoma, M., & Gambao, E. (2013). Extending automation of building construction — Survey on potential sensor technologies and robotic applications. Automation in Construction, 36, 168–178. <https://doi.org/10.1016/j.autcon.2013.08.002>
    [7] Singh, G., & Banga, V. K. (2022). Robots and its types for industrial applications. Materials Today: Proceedings, 60, 1779–1786. <https://doi.org/10.1016/j.matpr.2021.12.426>
    [8] Kersten, T., Wolf, J., & Lindstaedt, M. (2022). INVESTIGATIONS INTO THE ACCURACY OF THE UAV SYSTEM DJI MATRICE 300 RTK WITH THE SENSORS ZENMUSE P1 AND L1 IN THE HAMBURG TEST FIELD. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1-2022, 339–346. <https://doi.org/10.5194/isprs-archives-xliii-b1-2022-339-2022>
    [9] Ciszewski, M., Giergiel, M., Buratowski, T., & Małka, P. (2020). Modeling and Control of a Tracked Mobile Robot for Pipeline Inspection. In Mechanisms and Machine Science. Springer International Publishing. <https://doi.org/10.1007/978-3-030-42715-3>
    [10] Sweet, R. (2018). The contractor who invented a construction robot. Construction Research and Innovation, 9(1), 9–12. <https://doi.org/10.1080/20450249.2018.1442702>
    [11] Bock, T., & Linner, T. (2016). Construction Robots. Cambridge University Press. <https://doi.org/10.1017/cbo9781139872041>
    [12] Pangerc, T., Robinson, S., Theobald, P., & Galley, L. (2016). Underwater sound measurement data during diamond wire cutting: First description of radiated noise. In Proceedings of Meetings on Acoustics (p. 040012). 171st Meeting of the Acoustical Society of America. Acoustical Society of America. <https://doi.org/10.1121/2.0000322>
    [13] Ham, Y., Han, K. K., Lin, J. J., & Golparvar-Fard, M. (2016). Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Visualization in Engineering, 4(1). <https://doi.org/10.1186/s40327-015-0029-z>
    [14] Guan, S., Zhu, Z., & Wang, G. (2022). A Review on UAV-Based Remote Sensing Technologies for Construction and Civil Applications. Drones, 6(5), 117. <https://doi.org/10.3390/drones6050117>
    [15] Rachmawati, T. S. N., & Kim, S. (2022). Unmanned Aerial Vehicles (UAV) Integration with Digital Technologies toward Construction 4.0: A Systematic Literature Review. Sustainability, 14(9), 5708. <https://doi.org/10.3390/su14095708>
    [16] Hachijo, T., & Igarashi, S. (2023). Autonomous Robot for Ceiling Board Construction Work “Robo-Buddy Ceiling.” In 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE) (pp. 1–7). 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). IEEE. <https://doi.org/10.1109/case56687.2023.10260608>
    [17] Tateyama, M. (n.d.). A new stage of construction in Japan — i-Construction. Special Contribution, Press-in Engineering Association Newsletter. <https://www.press-in.org/_upload/files/Newsletter/topics/special%20contribution/special%20contribution%20by%20Dr.%20Tateyama%20%20.pdf>
    中文文獻
    [1] 行政院公共工程委員會(2022年9月12日)。公共工程採用自動化及預鑄化之規劃設計參考指引(工程技字第1110201067號函)。< https://www.pcc.gov.tw/content/index?eid=8718&type=C&lang=1>
    [2] 臺南市政府工務局(2023年5月16日)。臺南市公共工程導入智慧科技 打造永續城市新標竿。取自臺南市政府全球資訊網:<https://wrb1.tainan.gov.tw/News_Content.aspx?n=5234&s=38863>
    [3] 經濟部商業發展署(2025)。現行政府採購法及相關規範:創新產品或服務優先採購辦法說明。取自 <https://www.cloudmarketplace.org.tw/order/guide2>
    [4] 臺灣中油股份有限公司(n.d.)。成果發表。取自 https://www.cpc.com.tw/cl.aspx?n=3110

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE