| 研究生: |
蘇奕文 Su, Yi-Wen |
|---|---|
| 論文名稱: |
從公共工程發包政策探討導入營建機器人之誘因機制——以臺灣火力發電廠工程為例 A Policy-Oriented Analysis of Incentive Mechanisms for Integrating Construction Robotics into Public Infrastructure: A Case Study of Thermal Power Plant Projects in Taiwan |
| 指導教授: |
馮重偉
Feng , Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 施工自動化 、公共工程 、最有利標 、政府採購 、風險管理 、機器人施工 、誘因機制 |
| 外文關鍵詞: | Construction Automation, Public Works, Most Advantageous Tender, Government Procurement, Risk Management, Robotic Construction , Incentive Mechanisms |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討臺灣公共工程採購制度如何因應施工自動化技術(例如機器人設備)之導入,並分析現行法規與契約制度所存在的障礙,進一步提出增加誘因機制的策略。研究首先回顧數位轉型背景與國內外施工自動化發展現況,並結合工項分類方法,辨識具備導入潛力之工程作業,初步聚焦於勘查、製造與拆除三大類型。接續構建「施工機器人導入之發包模式」,整合技術評選、契約條款與風險管理三大面向,並以大潭電廠抽水機房工程進行模擬驗證,評估自動化導入之可行性與制度相容性。研究結果顯示,在「最有利標」評選制度中增設自動化技術評分項目,可有效提高創新廠商的中標機率;契約面若能明訂租賃方式、維護保固、操作責任及誘因條款,將有助於降低風險與成本障礙,並促進施工自動化的採用。
最後,本研究提出短期評選與契約面調整建議,以及中長期示範專案與風險共擔機制之制度建構策略,期能作為我國推動營建產業數位轉型之政策參考。
This study aims to explore how Taiwan’s public works procurement system can accommodate the integration of construction automation technologies, such as robotic equipment, and to analyze the existing legal and contractual barriers while proposing strategies to enhance incentive mechanisms. The research first reviews the background of digital transformation and the development status of construction automation in Taiwan and abroad. It then applies a work classification approach to identify construction tasks with high automation potential, with an initial focus on three categories: exploration, fabrication, and demolition. Subsequently, a “procurement model for integrating construction robots” is developed, incorporating three key aspects: technical evaluation, contractual arrangements, and risk management. Using the Datan Combined-Cycle Power Plant Circulating Water Pump House Project as a case study, the model is validated through simulation to assess the feasibility and institutional compatibility of automation adoption. The results indicate that introducing an automation technology evaluation item into the “Most Advantageous Tender” selection criteria can effectively increase the success rate of innovative contractors. Furthermore, explicitly specifying leasing arrangements, maintenance and warranty terms, operational responsibilities, and incentive provisions in contracts can help reduce risks and cost barriers, thereby promoting the adoption of construction automation.
Finally, this study proposes short-term recommendations for tender evaluation and contractual adjustments, as well as medium- to long-term strategies for demonstration projects and risk-sharing mechanisms, with the goal of serving as a policy reference for promoting the digital transformation of Taiwan’s construction industry.
英文文獻
[1] Ang, K. C. S., Sankaran, S., & Liu, D. (2024). Sociotechnical considerations on developing human robot teaming solutions for construction: a case study. Construction Robotics, 8(2). <https://doi.org/10.1007/s41693-024-00140-y>
[2] Bock, T. (2015). The future of construction automation: Technological disruption and the upcoming ubiquity of robotics. Automation in Construction, 59, 113–121. <https://doi.org/10.1016/j.autcon.2015.07.022>
[3] Liang, C.-J., Wang, X., Kamat, V. R., & Menassa, C. C. (2021). Human–Robot Collaboration in Construction: Classification and Research Trends. Journal of Construction Engineering and Management, 147(10).<https://doi.org/10.1061/(asce)co.1943-7862.0002154>
[4] Liang, C.-J., Kamat, V. R., & Menassa, C. C. (2020). Teaching robots to perform quasi-repetitive construction tasks through human demonstration. Automation in Construction, 120, 103370. <https://doi.org/10.1016/j.autcon.2020.103370>
[5] Zhang, M., Xu, R., Wu, H., Pan, J., & Luo, X. (2023). Human–robot collaboration for on-site construction. Automation in Construction, 150, 104812. <https://doi.org/10.1016/j.autcon.2023.104812>
[6] Vähä, P., Heikkilä, T., Kilpeläinen, P., Järviluoma, M., & Gambao, E. (2013). Extending automation of building construction — Survey on potential sensor technologies and robotic applications. Automation in Construction, 36, 168–178. <https://doi.org/10.1016/j.autcon.2013.08.002>
[7] Singh, G., & Banga, V. K. (2022). Robots and its types for industrial applications. Materials Today: Proceedings, 60, 1779–1786. <https://doi.org/10.1016/j.matpr.2021.12.426>
[8] Kersten, T., Wolf, J., & Lindstaedt, M. (2022). INVESTIGATIONS INTO THE ACCURACY OF THE UAV SYSTEM DJI MATRICE 300 RTK WITH THE SENSORS ZENMUSE P1 AND L1 IN THE HAMBURG TEST FIELD. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1-2022, 339–346. <https://doi.org/10.5194/isprs-archives-xliii-b1-2022-339-2022>
[9] Ciszewski, M., Giergiel, M., Buratowski, T., & Małka, P. (2020). Modeling and Control of a Tracked Mobile Robot for Pipeline Inspection. In Mechanisms and Machine Science. Springer International Publishing. <https://doi.org/10.1007/978-3-030-42715-3>
[10] Sweet, R. (2018). The contractor who invented a construction robot. Construction Research and Innovation, 9(1), 9–12. <https://doi.org/10.1080/20450249.2018.1442702>
[11] Bock, T., & Linner, T. (2016). Construction Robots. Cambridge University Press. <https://doi.org/10.1017/cbo9781139872041>
[12] Pangerc, T., Robinson, S., Theobald, P., & Galley, L. (2016). Underwater sound measurement data during diamond wire cutting: First description of radiated noise. In Proceedings of Meetings on Acoustics (p. 040012). 171st Meeting of the Acoustical Society of America. Acoustical Society of America. <https://doi.org/10.1121/2.0000322>
[13] Ham, Y., Han, K. K., Lin, J. J., & Golparvar-Fard, M. (2016). Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Visualization in Engineering, 4(1). <https://doi.org/10.1186/s40327-015-0029-z>
[14] Guan, S., Zhu, Z., & Wang, G. (2022). A Review on UAV-Based Remote Sensing Technologies for Construction and Civil Applications. Drones, 6(5), 117. <https://doi.org/10.3390/drones6050117>
[15] Rachmawati, T. S. N., & Kim, S. (2022). Unmanned Aerial Vehicles (UAV) Integration with Digital Technologies toward Construction 4.0: A Systematic Literature Review. Sustainability, 14(9), 5708. <https://doi.org/10.3390/su14095708>
[16] Hachijo, T., & Igarashi, S. (2023). Autonomous Robot for Ceiling Board Construction Work “Robo-Buddy Ceiling.” In 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE) (pp. 1–7). 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). IEEE. <https://doi.org/10.1109/case56687.2023.10260608>
[17] Tateyama, M. (n.d.). A new stage of construction in Japan — i-Construction. Special Contribution, Press-in Engineering Association Newsletter. <https://www.press-in.org/_upload/files/Newsletter/topics/special%20contribution/special%20contribution%20by%20Dr.%20Tateyama%20%20.pdf>
中文文獻
[1] 行政院公共工程委員會(2022年9月12日)。公共工程採用自動化及預鑄化之規劃設計參考指引(工程技字第1110201067號函)。< https://www.pcc.gov.tw/content/index?eid=8718&type=C&lang=1>
[2] 臺南市政府工務局(2023年5月16日)。臺南市公共工程導入智慧科技 打造永續城市新標竿。取自臺南市政府全球資訊網:<https://wrb1.tainan.gov.tw/News_Content.aspx?n=5234&s=38863>
[3] 經濟部商業發展署(2025)。現行政府採購法及相關規範:創新產品或服務優先採購辦法說明。取自 <https://www.cloudmarketplace.org.tw/order/guide2>
[4] 臺灣中油股份有限公司(n.d.)。成果發表。取自 https://www.cpc.com.tw/cl.aspx?n=3110