| 研究生: |
吳偉達 Wu, Wei-Da |
|---|---|
| 論文名稱: |
雙向微流體驅動系統之研究 Study of Bi-directional Microfluid Driving Systems |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 微流體 、流體控制 、微機電 |
| 外文關鍵詞: | fluid controll, microfluid, MEMS |
| 相關次數: | 點閱:121 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微全分析系統(μTAS)已經在單一晶片上發展出關於化學反應、分離和感測的一些分析過程。在醫學和生醫的應用方面,微全分析系統必須設計特別傳輸機制以透過系統中的微流道使樣品和試劑移動。微流體驅動系統之研究是一種利用氣流動力之微流體驅動方法及裝置,特別適用於操作生化檢測流程之可棄式反應晶片,例如操作核酸檢體處理及鹼基序列檢測之生物晶片。
這個驅動系統是一個單一晶片的結構,沒有移動部分並且不需要微製程中的加熱器或電極。這個氣體驅動器是在晶片裡加入微流道製程,並且藉著吹氣流透過此元件來使它工作。這個雙向驅動模組為吸管和推管兩個個體部分的結合。這個驅動系統提供一個穩定和靈活的雙向微流體驅動控制。藉由調整推出/吸入比例的參數,例如:在進氣流道的位置和氣流速度上,觀察其數值的研究;以及探討不同的流體性質在此驅動系統中的流動情形。
微流體驅動系統與微反應模組之間無須任何管道連結,且所有氣流均固定為向外吹送,因此無微反應模組承載之檢體或反應試劑回溯污染驅動系統之虞;搭配的微反應模組結構中亦無須佈置任何可動元件,將可有效的簡化製程、降低成本。
Micro Total Analysis Systems (μTAS) have been developed to perform a number of analytical processes involving chemical reactions, separation and sensing on a single chip. In medical and biomedical applications, a mTAS must be designed considering special transport mechanisms to move samples and reagents through the microchannels in the system.
This pneumatic system is an on-chip planar structure without moving parts and does not require microfabricated heaters or electrodes. The pumping actuation is introduced to the microchannel fabricated in chip by blowing an airflow through this device. The bi-directional driving module combines two individual components for suction and exclusion. The driving system provides a stable and flexible bi-directional microfluid driving control. The tunable parameters for adjusting the Exclusion/Suction ratios, such as, the location of the inlet channel and the velocities of the airflow were observed in the numerical study. The effects of the structure of the air gallery and the fluidic properties, such as viscosity and surface tension of the liquid are investigated herein
For the presented design, no air conduit was employed to connect the servo-system to the driving system therefore; the packaging difficulty and leakage problem can be eliminated. The final airflow outlet was fixed in one direction so that it can prevent cross-contamination between servo-system and chip. The driving system is therefore particularly suited to micro devices for biochemical analysis.
[1] M. T. Cronin, R. V. Fucini, S. M. Kim, R. S. Masino,R. M. Wespi and C. G. Miyada, Cystic fibrosis mutation detection by hybridization to light-generated DNA probe arrays, Hum Mutat, 7(3), pp. 244-255, 1996.
[2] J. M. Heller, An Integrated Microelectronic Multiplex Hybridzation Systems: Design and Microfabricaion, Ph.D. Thesis, IBC BioChip Technology, 1998.
[3] K. Seiler, D. J. Harrison and A. Manz, Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems, J. Chromato., 593, pp. 253-258, 1992.
[4] M. Washizu, T. Yamamoto, O. Kurosawa and N. Shimamoto, Molecular Surgery Based on Microsystems, Conference on Solid-State Sensors and Actuators, pp. 473-476, June 1997.
[5] J. Stafford, Jr. Brignac, R. Gangadharan, M. McMahon and J. Denman, Engineering in Genomics, IEEE Engineering in Medicine and Biology, pp. 120-122, March 1999.
[6] R. Zengerle, Roland; Richter; Axel, Electrostatically driven diaphragm micropump, 美國專利5529465, 1996.
[7] F. T. Hartley, Micromachined peristaltic pump, 美國專利5705018, 1998.
[8] A. S. Dewa and C. J. P. Sevrain, Microfabricated fluidic devices, 美國專利5788468, 1998.
[9] K. Tojo and Y. Hirai, Micro flow controlling pump, 美國專利5599175, 1997.
[10] P. J. Zanzucchi, S. E. McBride, C. A. Burton and S. C. Cherukuri, Apparatus and methods for controlling fluid flow in microchannels, 美國專利5632876, 1997.
[11] P. C. H. Li and D. J. Harrison, Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects, Anal. Chem. 1997, 69, pp. 1564-1568.
[12] N. J. Mourlas, D. Jaeggi,A. F. Flannery, B. L. Gray, B. P. van Drieenhuizen, C. W. Storment, N. I. Maluf and G. T. A. Kovacs, Novel interconnection and channel technologies for microfluidics, Proceedings of the mTAS ’98 Workshop, 1998, pp. 27-30.
[13] H. T. G. van Lintel, F. C. M. van de Pol and S. Bouwstra, A piezoelectric micropump based on micromachining of silicon, Sens. Actuators A 15, pp. 153-167, 1988.
[14] R. Zengerle, A. Richer and H. Sandmaier, A micro membrane pump with electrostatic actuation, in: Proceedings of the IEEE Micro Electro Mechanical Systems, Travemünde, Germany, pp. 19-24, February 1992.
[15] L. Bousse and A. Minalla, Optimization of sample injection components in electrokinetic microfluid system, in: Technical Digest of Twelfth IEEE International Conference on Micro Electro Mechanical Systems, Orlando, Florida, U.S.A., pp. 309-314, January 1999.
[16] T. S. J. Lammerink, M. Elwenspoek and J. H. J. Fluitman, Integrated micro-liquid dosing system, in: Proceedings of the IEEE Micro Electro Mechanical Systems, Fort Lauderdale, U.S.A., pp. 254-259, 1993.
[17] C. P. Jen and Y. C. Lin, Design and simulation of bi-directional microfluid driving systems, J. Micromech. Microeng., 17, pp. 115-121, 2002.
[18] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, Wiley, New York, U.S.A. 1960.