| 研究生: |
洪妤萱 Hung, Yu-Hsuan |
|---|---|
| 論文名稱: |
脂質與胺基酸代謝改變對癌症進展之影響 The Contribution of Altered Metabolism in Lipid and Amino Acid to Cancer Development |
| 指導教授: |
賴明德
Lai, Ming-Derg |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 癌症代謝 、脂質分解 、醯基輔酶 A 硫酯酶 、精氨酸代謝 、精氨基琥珀酸裂解酶 、肝癌 、乳癌 |
| 外文關鍵詞: | Cancer metabolism, lipolysis, acyl-CoA thioesterase, arginine metabolism, argininosuccinate lyase, liver cancer, breast cancer |
| 相關次數: | 點閱:212 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌症代謝失衡為其一發展指標,且巨分子代謝失衡,包含其於醣類、脂質、蛋白質之失衡,均調控癌症發展。於脂質部分,除脂質生成外,脂質分解亦調控癌症發展,透過影響游離脂肪酸可得性以供應癌症能量。於胺基酸部分,除麩醯胺酸、絲氨酸、甘氨酸,精氨酸代謝亦調控癌症發展,透過影響精氨酸可得性以供應癌症生長。於本研究中,我們探得代謝失衡於癌症發展之重要性,透過給予範例關於脂質分解酵素醯基輔酶A硫酯酶8所增加之活體外肝癌發展、脂質分解酵素醯基輔酶A硫酯酶7所增加之活體外乳癌發展、及精氨酸生產酵素精氨基琥珀酸裂解酶-細胞週期調控者週期素A2互動所增加之活體外肝癌提升及精氨基琥珀酸裂解酶過度表現所增加之活體外肝癌進展攸關抗藥性。我們探得於醯基輔酶A硫酯酶8所增加之活體外肝癌發展部分,生物資訊分析顯示醯基輔酶A硫酯酶8之基因拷貝數與RNA表現於肝癌檢體中相較於非癌肝組織有增加之情形,而活體外實驗顯示醯基輔酶A硫酯酶8基因靜默降低肝癌發展而可被其過度表現及下游脂質代謝產物肉荳蔻酸所恢復;於醯基輔酶A硫酯酶7所增加之活體外乳癌發展部分,系統化生物資訊分析顯示醯基輔酶A硫酯酶7於乳癌中展現醯基輔酶A硫酯酶家族成員所相關之癌症預後中最強關聯性,且可進一步與脂質代謝改變連結,而可被芳香酶抑制劑及磷脂醯肌醇-3激酶抑制劑所壓抑,而活體外實驗顯示醯基輔酶A硫酯酶7基因靜默降低乳癌發展,而可被其下游脂質代謝產物棕櫚酸所恢復,而其過度表現則提升乳癌發展,而可被芳香酶抑制劑及磷脂醯肌醇-3激酶抑制劑所壓抑;於精氨基琥珀酸裂解酶-週期素A2互動所增加之活體外肝癌提升及精氨基琥珀酸裂解酶過度表現所增加之活體外肝癌進展攸關抗藥性部分,活體外實驗顯示精氨基琥珀酸裂解酶與週期素A2共同存在且互動於肝癌細胞質中,且該互動無須兩者之分子功能並亦可恢復精氨基琥珀酸裂解酶基因靜默所降低之肝癌發展,而精氨基琥珀酸裂解酶過度表現提高肝癌對精氨酸抽離療法之抗藥性,而生物資訊分析顯示精氨基琥珀酸裂解酶所調控之肝癌發展與細胞週期進展等途徑相關,且可被預測得之藥物康肯、希樂葆、益撲喘所壓抑。上述研究進而顯示代謝失衡於多種癌症之重要性,以脂質分解於肝癌及乳癌發展,及精氨酸代謝於肝癌發展為例。
Dysregulated cancer metabolism is an emerging hallmark in cancer formation, and disturbed macromolecule metabolism including those of glucose, lipid, and amino acid regulates cancer formation. In the part of lipid, in addition to lipogenesis, lipolysis modulates tumor development by controlling free fatty acid availability supporting neoplastic energetics. In the part of amino acid, in addition to glutamine, serine and glycine, arginine metabolism regulates cancer formation by controlling arginine availability supporting neoplastic growth. In the present study, we analyzed the importance of dysregulated metabolism in cancer formation, by giving examples of lipolytic enzyme acyl-CoA thioesterase 8 (ACOT8)-increased HCC formation in vitro, lipolytic enzyme ACOT7-increased breast cancer formation in vitro, and arginine producing enzyme argininosuccinate lyase (ASL)-cell cycle regulator cyclin A2 (CCNA2) interaction-increased HCC promotion and ASL-increased HCC progression regarding drug resistance in vitro. We found that in the part of ACOT8-increased HCC formation in vitro, ACOT8 gene copy number and mRNA expression are increased in HCC compared to those of non-tumor liver tissues with bioinformatic analysis, and ACOT8 knockdown decreased HCC formation which could be compensated with ACOT8 overexpression and downstream lipid metabolite myristic acid with in vitro assays; in the part of ACOT7-increased breast cancer formation in vitro, ACOT7 in breast cancer displays strongest association in ACOT member-connected cancer prognosis which further links to altered lipid metabolism and can be counteracted with aromatase- and PI3K-antagonists with systematically bioinformatic analysis, and ACOT7 knockdown decreased breast cancer formation which could be compensated with downstream lipid metabolite palmitic acid, while ACOT7 overexpression increased breast cancer formation which could be counteracted with aromatase- and PI3K-antagonists with in vitro assays; in the part of ASL-CCNA2 interaction-increased HCC promotion and ASL-increased HCC progression regarding drug resistance in vitro, ASL colocalized and interacted with CCNA2 in the cytosol of HCC cells requiring no their molecular functions, and their interaction compensated ASL knockdown-decreased HCC formation, as well as ASL overexpression increased drug resistance against arginine deprivation therapy ADI-PEG with in vitro assays, with ASL-regulated HCC involves pathways including cell cycle progression and can be counteracted with predicted therapeutics bisoprolol, celecoxib, and ipratropium bromide with bioinformatic analysis. Above studies thus suggest the importance of dysregulated metabolism in cancer formation of multiple origins, taking lipolysis in HCC and breast cancer formation as well as arginine metabolism in HCC formation as examples.
Amelio, I., Cutruzzola, F., Antonov, A., Agostini, M., and Melino, G. (2014). Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191-8.
Arsic, N., Bendris, N., Peter, M., Begon-Pescia, C., Rebouissou, C., Gadéa, G., Bouquier, N., Bibeau, F., Lemmers, B., and Blanchard, J. M. (2012). A novel function for cyclin A2: control of cell invasion via RhoA signaling. J. Cell Biol. 196, 147-62.
Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I. F., Soboleva, A., Tomashevsky, M., and Edgar, R. (2007). NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res. 35, D760-5.
Bassett, J. K., Hodge, A. M., English, D. R., MacInnis, R. J., and Giles, G. G. (2016). Plasma phospholipids fatty acids, dietary fatty acids, and breast cancer risk. Cancer Causes Control 27, 759-73.
Bechmann, L. P., Hannivoort, R. A., Gerken, G., Hotamisligil, G. S., Trauner, M., and Canbay, A. (2012). The interaction of hepatic lipid and glucose metabolism in liver diseases. J. Hepatol. 56, 952-64.
Bendris, N., Lemmers, B., Blanchard, J.-M., and Arsic, N. (2011). Cyclin A2 mutagenesis analysis: a new insight into CDK activation and cellular localization requirements. PLoS One 6, e22879.
Bhalla, K., Hwang, B. J., Dewi, R. E., Twaddel, W., Goloubeva, O. G., Wong, K.-K., Saxena, N. K., Biswal, S., and Girnun, G. D. (2012). Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev. Res. 5, 544-52.
Budhu, A., Roessler, S., Zhao, X., Yu, Z., Forgues, M., Ji, J., Karoly, E., Qin, L. X., Ye, Q. H., and Jia, H. L. (2013). Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology 144, 1066-75.
Cambridge, S. B., Gnad, F., Nguyen, C., Bermejo, J. L., Krüger, M., and Mann, M. (2011). Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J. Proteome Res. 10, 5275-84.
Cantor, J. R., and Sabatini, D. M. (2012). Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2, 881-98.
Carbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B., Lewis, S., and Group, W. P. W. (2009). AmiGO: online access to ontology and annotation data. Bioinformatics 25, 288-9.
Carracedo, A., Cantley, L. C., and Pandolfi, P. P. (2013). Cancer metabolism: fatty acid oxidation in the limelight. Nat. Rev. Cancer 13, 227-32.
Cohen, D. E. (2013). New players on the metabolic stage: how do you like them acots? Adipocyte 2, 3-6.
Cole, S. W., and Sood, A. K. (2012). Molecular pathways: beta-adrenergic signaling in cancer. Clin. Cancer Res. 18, 1201-6.
Currie, E., Schulze, A., Zechner, R., Walther, T. C., and Farese, R. V. (2013). Cellular fatty acid metabolism and cancer. Cell Metab. 18, 153-61.
DeCensi, A., Dunn, B. K., Puntoni, M., Gennari, A., and Ford, L. G. (2012). Exemestane for breast cancer prevention: a critical shift? Cancer Discov. 2, 25-40.
DeNicola, G. M., and Cantley, L. C. (2015). Cancer’s fuel choice: new flavors for a picky eater. Mol. Cell 60, 514-23.
Desvergne, B., Michalik, L., and Wahli, W. (2006). Transcriptional regulation of metabolism. Physiol. Rev. 86, 465-514.
Ekins, S., Bugrim, A., Brovold, L., Kirillov, E., Nikolsky, Y., Rakhmatulin, E., Sorokina, S., Ryabov, A., Serebryiskaya, T., and Melnikov, A. (2006). Algorithms for network analysis in systems-ADME/Tox using the MetaCore and MetaDrug platforms. Xenobiotica 36, 877-901.
Ellis, J. M., Wong, G. W., and Wolfgang, M. J. (2013). Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity. Mol. Cell Biol. 33, 1869-82.
Faivre, S., de Gramont, A., and Raymond, E. (2016). Learning from 7 years of experience with sorafenib in advanced HCC: sorafenib better than sorafenib? Target. Oncol. 11, 565-7.
Feun, L. G., Kuo, M. T., and Savaraj, N. (2015). Arginine deprivation in cancer therapy. Curr. Opin. Clin. Nutr. Metab. Care. 18, 78-82.
Fux, L., Ilan, N., Sanderson, R. D., and Vlodavsky, I. (2009). Heparanase: busy at the cell surface. Trends Biochem. Sci. 34, 511-9.
Galluzzi, L., Kepp, O., Vander Heiden, M. G., and Kroemer, G. (2013). Metabolic targets for cancer therapy. Nat. Rev. Drug Discov. 12, 829-46.
Ganapathy-Kanniappan, S., and Geschwind, J.-F. H. (2013). Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer 12, 152.
Glazer, E. S., Piccirillo, M., Albino, V., Di Giacomo, R., Palaia, R., Mastro, A. A., Beneduce, G., Castello, G., De Rosa, V., and Petrillo, A. (2010). Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J. Clin. Oncol. 28, 2220-6.
Hamanaka, R. B., and Chandel, N. S. (2012). Targeting glucose metabolism for cancer therapy. J. Exp. Med. 209, 211-5.
Han, S., and Cohen, D. E. (2012). Functional characterization of thioesterase superfamily member 1/Acyl-CoA thioesterase 11: implications for metabolic regulation. J. Lipid Res. 53, 2620-31.
Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-74.
Hara, T., Kashihara, D., Ichimura, A., Kimura, I., Tsujimoto, G., and Hirasawa, A. (2014). Role of free fatty acid receptors in the regulation of energy metabolism. Biochim. Biophys. Acta. 1841, 1292-300.
Henderson, B., and Martin, A. C. (2014). Protein moonlighting: a new factor in biology and medicine. Biochem. Soc. Trans. 42, 1671-8.
Hensley, C. T., Wasti, A. T., and DeBerardinis, R. J. (2013). Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678-84.
Hoshida, Y., Villanueva, A., Kobayashi, M., Peix, J., Chiang, D. Y., Camargo, A., Gupta, S., Moore, J., Wrobel, M. J., and Lerner, J. (2008). Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N. Engl. J. Med. 359, 1995-2004.
Huang, H.-L., Hsu, H.-P., Shieh, S.-C., Chang, Y.-S., Chen, W.-C., Cho, C.-Y., Teng, C.-F., Su, I.-J., Hung, W.-C., and Lai, M.-D. (2013). Attenuation of argininosuccinate lyase inhibits cancer growth via cyclin A2 and nitric oxide. Mol. Cancer Ther. 12, 2505-16.
Huberts, D. H., and van der Klei, I. J. (2010). Moonlighting proteins: an intriguing mode of multitasking. Biochim. Biophys. Acta. 1803, 520-5.
Hung, Y.-H., Chan, Y.-S., Chang, Y.-S., Lee, K.-T., Hsu, H.-P., Yen, M.-C., Chen, W.-C., Wang, C.-Y., and Lai, M.-D. (2014). Fatty acid metabolic enzyme acyl-CoA thioesterase 8 promotes the development of hepatocellular carcinoma. Oncol. Rep. 31, 2797-803.
Hunt, M. C., Solaas, K., Kase, B. F., and Alexson, S. E. (2002). Characterization of an acyl-CoA thioesterase that functions as a major regulator of peroxisomal lipid metabolism. J. Biol. Chem. 277, 1128-38.
Hunt, M. C., and Alexson, S. E. (2002). The role acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog. Lipid Res. 41, 99-130.
Hunt, M. C., Yamada, J., Maltais, L. J., Wright, M. W., Podesta, E. J., and Alexson, S. E. (2005). A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases. J. Lipid Res. 46, 2029-32.
Hunt, M. C., Siponen, M. I., and Alexson, S. E. (2012). The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim. Biophys. Acta. 1822, 1397-410.
Ilan, N., Elkin, M., and Vlodavsky, I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int. J. Biochem. Cell Biol. 38, 2018-39.
Inwald, E., Klinkhammer-Schalke, M., Hofstädter, F., Zeman, F., Koller, M., Gerstenhauer, M., and Ortmann, O. (2013). Ki-67 is a prognostic parameter in breast cancer patients: results of a large population-based cohort of a cancer registry. Breast Cancer Res. Treat. 139, 539-52.
Jackman, M., Kubota, Y., Den Elzen, N., Hagting, A., and Pines, J. (2002). Cyclin A-and cyclin E-Cdk complexes shuttle between the nucleus and the cytoplasm. Mol. Biol. Cell 13, 1030-45.
Jeffery, C. J. (2015). Why study moonlighting proteins? Front. Genet. 6, 211.
Joshi‐Barve, S., Barve, S. S., Amancherla, K., Gobejishvili, L., Hill, D., Cave, M., Hote, P., and McClain, C. J. (2007). Palmitic acid induces production of proinflammatory cytokine interleukin‐8 from hepatocytes. Hepatology 46, 823-30.
Jung, W. Y., Kim, Y. H., Ryu, Y. J., Kim, B.-H., Shin, B. K., Kim, A., and Kim, H. K. (2013). Acyl-CoA thioesterase 8 is a specific protein related to nodal metastasis and prognosis of lung adenocarcinoma. Pathol. Res. Pract. 209, 276-83.
Kang, H. W., Niepel, M. W., Han, S., Kawano, Y., and Cohen, D. E. (2012). Thioesterase superfamily member 2/acyl-CoA thioesterase 13 (Them2/Acot13) regulates hepatic lipid and glucose metabolism. FASEB J. 26, 2209-21.
Kang, H. W., Ozdemir, C., Kawano, Y., LeClair, K. B., Vernochet, C., Kahn, C. R., Hagen, S. J., and Cohen, D. E. (2013). Thioesterase superfamily member 2/Acyl-CoA thioesterase 13 (Them2/Acot13) regulates adaptive thermogenesis in mice. J. Biol. Chem. 288, 33376-86.
Khan, M. W., Biswas, D., Ghosh, M., Mandloi, S., Chakrabarti, S., and Chakrabarti, P. (2015). mTORC2 controls cancer cell survival by modulating gluconeogenesis. Cell Death Discov. 1, 15016.
Laisupasin, P., Thompat, W., Sukarayodhin, S., Sornprom, A., and Sudjaroen, Y. (2013). Comparison of serum lipid profiles between normal controls and breast cancer patients. J. Lab. Physicians 5, 38-41.
Lamb, J. (2007). The Connectivity Map: a new tool for biomedical research. Nat. Rev. Cancer 7, 54-60.
Lee, J.-S., Chu, I.-S., Mikaelyan, A., Calvisi, D. F., Heo, J., Reddy, J. K., and Thorgeirsson, S. S. (2004). Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat. Genet. 36, 1306-11.
Lee, J. H., Jang, H., Lee, S. M., Lee, J. E., Choi, J., Kim, T. W., Cho, E. J., and Youn, H. D. (2015). ATP‐citrate lyase regulates cellular senescence via an AMPK‐and p53‐dependent pathway. FEBS J. 282, 361-71.
Leithner, K., Hrzenjak, A., and Olschewski, H. (2014). Gluconeogenesis in cancer: door wide open. Proc. Natl. Acad. Sci. U. S. A. 111, E4394.
Leng, J., Han, C., Demetris, A. J., Michalopoulos, G. K., and Wu, T. (2003). Cyclooxygenase‐2 promotes hepatocellular carcinoma cell growth through AKT activation: Evidence for AKT inhibition in celecoxib‐induced apoptosis. Hepatology 38, 756-68.
Li, B., Qiu, B., Lee, D. S., Walton, Z. E., Ochocki, J. D., Mathew, L. K., Mancuso, A., Gade, T. P., Keith, B., and Nissim, I. (2014). Fructose-1, 6-bisphosphatase opposes renal carcinoma progression. Nature 513, 251-5.
Li, J., Zhao, S., Zhou, X., Zhang, T., Zhao, L., Miao, P., Song, S., Sun, X., Liu, J., and Zhao, X. (2013). Inhibition of lipolysis by mercaptoacetate and etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to paclitaxel. PLoS One 8, e74623.
Li, L., Pilo, G. M., Li, X., Cigliano, A., Latte, G., Che, L., Joseph, C., Mela, M., Wang, C., and Jiang, L. (2016). Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans. J. Hepatol. 64, 333-41.
Linnebank, M., Tschiedel, E., Häberle, J., Linnebank, A., Willenbring, H., Kleijer, W. J., and Koch, H. G. (2002). Argininosuccinate lyase (ASL) deficiency: mutation analysis in 27 patients and a completed structure of the human ASL gene. Hum. Genet. 111, 350-9.
Llaverias, G., Danilo, C., Mercier, I., Daumer, K., Capozza, F., Williams, T. M., Sotgia, F., Lisanti, M. P., and Frank, P. G. (2011). Role of cholesterol in the development and progression of breast cancer. Am. J. Pathol. 178, 402-12.
Locasale, J. W. (2013). Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572-83.
Maloberti, P. M., Duarte, A. B., Orlando, U. D., Pasqualini, M. E., Solano, Á. R., López-Otín, C., and Podestá, E. J. (2010). Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells. PLoS One 5, e15540.
Mani, M., Chen, C., Amblee, V., Liu, H., Mathur, T., Zwicke, G., Zabad, S., Patel, B., Thakkar, J., and Jeffery, C. J. (2014). MoonProt: a database for proteins that are known to moonlight. Nucleic Acids Res. 43, D277-82.
Martinez-Outschoorn, U. E., Peiris-Pagés, M., Pestell, R. G., Sotgia, F., and Lisanti, M. P. (2016). Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 113.
Mateo, F., Vidal-Laliena, M., Canela, N., Busino, L., Martinez-Balbas, M. A., Pagano, M., Agell, N., and Bachs, O. (2009). Degradation of cyclin A is regulated by acetylation. Oncogene 28, 2654-66.
Mayer, I. A., Abramson, V. G., Formisano, L., Balko, J. M., Estrada, M. V., Sanders, M. E., Juric, D., Solit, D., Berger, M. F., and Won, H. H. (2017). A phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2− metastatic breast cancer. Clin. Cancer Res. 23, 26-34.
McAlpine, J. A., Lu, H.-T., Wu, K. C., Knowles, S. K., and Thomson, J. A. (2014). Down-regulation of argininosuccinate synthetase is associated with cisplatin resistance in hepatocellular carcinoma cell lines: implications for PEGylated arginine deiminase combination therapy. BMC Cancer 14, 621.
McDonnell, D. P., Park, S., Goulet, M. T., Jasper, J., Wardell, S. E., Chang, C.-Y., Norris, J. D., Guyton, J. R., and Nelson, E. R. (2014). Obesity, cholesterol metabolism, and breast cancer pathogenesis. Cancer Res. 74, 4976-82.
Mizuno, H., Kitada, K., Nakai, K., and Sarai, A. (2009). PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med. Genomics 2, 18.
Nelson, E. R., Wardell, S. E., Jasper, J. S., Park, S., Suchindran, S., Howe, M. K., Carver, N. J., Pillai, R. V., Sullivan, P. M., and Sondhi, V. (2013). 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342, 1094-8.
Nomura, D. K., Long, J. Z., Niessen, S., Hoover, H. S., Ng, S.-W., and Cravatt, B. F. (2010). Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140, 49-61.
Ogba, N., Manning, N. G., Bliesner, B. S., Ambler, S. K., Haughian, J. M., Pinto, M. P., Jedlicka, P., Joensuu, K., Heikkilä, P., and Horwitz, K. B. (2014). Luminal breast cancer metastases and tumor arousal from dormancy are promoted by direct actions of estradiol and progesterone on the malignant cells. Breast Cancer Research 16, 489.
Oosterveer, M. H., and Schoonjans, K. (2014). Hepatic glucose sensing and integrative pathways in the liver. Cell Mol. Life Sci. 71, 1453-67.
Pepino, M. Y., Kuda, O., Samovski, D., and Abumrad, N. A. (2014). Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr. 34, 281-303.
Phan, L. M., Yeung, S.-C. J., and Lee, M.-H. (2014). Cancer metabolic reprogramming: importance, main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med. 11, 1-19.
Phillips, M. M., Sheaff, M. T., and Szlosarek, P. W. (2013). Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res. Treat. 45, 251-62.
Qiu, F., Huang, J., and Sui, M. (2015). Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett. 364, 1-7.
Röhrig, F., and Schulze, A. (2016). The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer 16, 732-49.
Rahman, M., and Hasan, M. R. (2015). Cancer metabolism and drug resistance. Metabolites 5, 571-600.
Ramakrishna, M., Williams, L. H., Boyle, S. E., Bearfoot, J. L., Sridhar, A., Speed, T. P., Gorringe, K. L., and Campbell, I. G. (2010). Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis. PLoS One 5, e9983.
Roessler, S., Long, E. L., Budhu, A., Chen, Y., Zhao, X., Ji, J., Walker, R., Jia, H. L., Ye, Q. H., and Qin, L. X. (2012). Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival. Gastroenterology 142, 957-66.
Santos, C. R., and Schulze, A. (2012). Lipid metabolism in cancer. FEBS J. 279, 2610-23.
Sheppard, N. G., Jarl, L., Mahadessian, D., Strittmatter, L., Schmidt, A., Madhusudan, N., Tegnér, J., Lundberg, E. K., Asplund, A., and Jain, M. (2015). The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation. Sci. Rep. 5, 15029.
Silvente-Poirot, S., and Poirot, M. (2014). Cholesterol and cancer, in the balance. Science 343, 1445-6.
Singh, S., Singh, P. P., Singh, A. G., Murad, M. H., and Sanchez, W. (2013). Statins are associated with a reduced risk of hepatocellular cancer: a systematic review and meta-analysis. Gastroenterology 144, 323-32.
Stepien, M., Duarte‐Salles, T., Fedirko, V., Floegel, A., Barupal, D. K., Rinaldi, S., Achaintre, D., Assi, N., Tjønneland, A., and Overvad, K. (2016). Alteration of amino acid and biogenic amine metabolism in hepatobiliary cancers: findings from a prospective cohort study. Int. J. Cancer 138, 348-60.
Sun, Z., Asmann, Y. W., Kalari, K. R., Bot, B., Eckel-Passow, J. E., Baker, T. R., Carr, J. M., Khrebtukova, I., Luo, S., and Zhang, L. (2011). Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing. PLoS One 6, e17490.
Syed, N., Langer, J., Janczar, K., Singh, P., Nigro, C. L., Lattanzio, L., Coley, H., Hatzimichael, E., Bomalaski, J., and Szlosarek, P. (2013). Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma. Cell Death Dis. 4, e458.
Synakiewicz, A., Stachowicz-Stencel, T., and Adamkiewicz-Drozynska, E. (2014). The role of arginine and the modified arginine deiminase enzyme ADI-PEG 20 in cancer therapy with special emphasis on Phase I/II clinical trials. Expert Opin. Investig. Drugs 23, 1517-29.
Teng, C.-F., Wu, H.-C., Hsieh, W.-C., Tsai, H.-W., and Su, I.-J. (2015). Activation of ATP citrate lyase by mTOR signal induces disturbed lipid metabolism in hepatitis B virus pre-S2 mutant tumorigenesis. J. Virol. 89, 605-14.
Tillander, V., Alexson, S. E., and Cohen, D. E. (2017). Deactivating fatty acids: acyl-CoA thioesterase-mediated control of lipid metabolism. Trends Endocrin. Met. S1043-2760, 30035-8.
Tirado-Vélez, J. M., Joumady, I., Sáez-Benito, A., Cózar-Castellano, I., and Perdomo, G. (2012). Inhibition of fatty acid metabolism reduces human myeloma cells proliferation. PLoS One 7, e46484.
Tsai, W.-B., Aiba, I., Lee, S.-Y., Feun, L., Savaraj, N., and Kuo, M. T. (2009). Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1α/Sp4. Mol. Cancer Ther. 8, 3223-33.
Tung, E. K. K., Mak, C. K. M., Fatima, S., Lo, R. C. L., Zhao, H., Zhang, C., Dai, H., Poon, R. T. P., Yuen, M. F., and Lai, C. L. (2011). Clinicopathological and prognostic significance of serum and tissue Dickkopf‐1 levels in human hepatocellular carcinoma. Liver Int. 31, 1494-504.
Ward, P. S., and Thompson, C. B. (2012). Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297-308.
Warner, M., and Gustafsson, J.-A. (2014). On estrogen, cholesterol metabolism, and breast cancer. N. Engl. J. Med. 370, 572-3.
Weber, A., and Heikenwalder, M. (2016). P (URI) fying novel drivers of NASH and HCC: a feedforward loop of IL17A via white adipose tissue. Cancer Cell 30, 15-7.
Wu, L., Li, L., Meng, S., Qi, R., Mao, Z., and Lin, M. (2013). Expression of argininosuccinate synthetase in patients with hepatocellular carcinoma. J. Gastroenterol. Hepatol. 28, 365-8.
Yang, W., Xia, Y., Ji, H., Zheng, Y., Liang, J., Huang, W., Gao, X., Aldape, K., and Lu, Z. (2011). Nuclear PKM2 regulates b-catenin transactivation upon EGFR activation. Nature 480, 118-22.
Yau, T., Cheng, P., Chan, P., Chan, W., Chen, L., Yuen, J., Pang, R., Fan, S., and Poon, R. T. (2013). A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (Peg-rhArg1) in patients with advanced hepatocellular carcinoma. Invest. New Drugs 31, 99-107.
Ye, L., Zhang, B., Seviour, E. G., Tao, K.-X., Liu, X.-H., Ling, Y., Chen, J.-Y., and Wang, G.-B. (2011). Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cells growth in colorectal cancer. Cancer Lett. 307, 6-17.
Yu, T., Liu, M., Luo, H., Wu, C., Tang, X., Tang, S., Hu, P., Yan, Y., Wang, Z., and Tu, G. (2014). GPER mediates enhanced cell viability and motility via non-genomic signaling induced by 17β-estradiol in triple-negative breast cancer cells. J. Steroid Biochem. Mol. Biol. 143, 392-403.
Yue, D., Zhang, Y., Cheng, L., Ma, J., Xi, Y., Yang, L., Su, C., Shao, B., Huang, A., and Xiang, R. (2016). Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by 1H-NMR-based metabonomics. Sci. Rep. 6, 24430.
Zaidi, N., Lupien, L., Kuemmerle, N. B., Kinlaw, W. B., Swinnen, J. V., and Smans, K. (2013). Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog. Lipid Res. 52, 585-9.
Zhang, P., Tu, B., Wang, H., Cao, Z., Tang, M., Zhang, C., Gu, B., Li, Z., Wang, L., and Yang, Y. (2014). Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion. Proc. Natl. Acad. Sci. U. S. A. 111, 10684-9.
Zhang, Y., Li, Y., Niepel, M. W., Kawano, Y., Han, S., Liu, S., Marsili, A., Larsen, P. R., Lee, C.-H., and Cohen, D. E. (2012). Targeted deletion of thioesterase superfamily member 1 promotes energy expenditure and protects against obesity and insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 109, 5417-22.
Zhao, C.-M., Hayakawa, Y., Kodama, Y., Muthupalani, S., Westphalen, C. B., Andersen, G. T., Flatberg, A., Johannessen, H., Friedman, R. A., and Renz, B. W. (2014). Denervation suppresses gastric tumorigenesis. Sci. Transl. Med. 6, 250ra115.
Zhao, Y., Butler, E. B., and Tan, M. (2013). Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4, e532.
校內:2022-06-30公開