簡易檢索 / 詳目顯示

研究生: 張家豪
Chang, Chia-Hao
論文名稱: 以有機前導物法製備SrTiO3粉末及其光催化性質之研究
Preparation and Photocatalytic Properties of Strontium Titanate Nanoparticles Produced by the Organic Precursor Method
指導教授: 申永輝
Shen, Yeong-Huei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 70
中文關鍵詞: 鈦酸鍶光觸媒有機前導物法
外文關鍵詞: SrTiO3, Organic Precursor Method, Photocatalysis
相關次數: 點閱:101下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究分為三階段,第一階段 利用有機前導物法製備奈米級鈦酸鍶粉末,嘗試不同熱處理(300℃、400℃)條件下製備前導物,探討不同時間下於450℃持溫煆燒對合成SrTiO3粉末之影響,以求達到合成粉末低溫(<500℃)和奈米級(<100nm)之效果。第二階段 進行UV-Visible分析和亞甲基藍光解實驗,以有機前導物法製備的粉末配合TiO2(P-25)和商用SrTiO3粉末做為比較,以此了解鈦酸鍶光催化性質及能力。第三階段 利用在第一階段中掌握的實驗參數,製備出含Cr3+之鈦酸鍶粉末,期能使SrTiO3粉末達到吸收可見光的效果。研究結果如下:

    1.發現300℃前導物(Precursor)於450℃-12h合成出SrTiO3粉末,並將粉末控制在20nm上下,且粉末的凝聚情形並不嚴重,成功改善有機前導物法的缺點。

    2.配合TiO2(P-25)和商用SrTiO3粉末進行UV-Visible分析和亞甲基藍光解實驗做為比較,實驗的結果顯示P-25光催效能為最佳,商用SrTiO3粉末次之,之後是有機前導物法製備的SrTiO3粉末,而固態反應法所製備的SrTiO3粉末光催化效果最差。

    3.製備SrTi(1-X)CrXO3 (X= 0.02、0.04和0.08)添加Cr離子之凝膠(Gel),可於在450℃-24h生成單一結晶相,當Cr的添加量為2和4%(X=0.02和0.04)時,在可見光區域產生大量的吸收效應;但當Cr含量為8%時(X=0.08),造成在反應過程中產生未知相,以致於無法達成吸收可見光之目的。

    Abstract
    There are three stage in this study:
    (1) SrTiO3 powders were prepared by the organic precursor method. 300℃ and 400℃ heat-temperature were used to produced precursor and the precursors were decomposed at 450℃for various times to obtain nano-sized(<100nm) SrTiO3 powders;
    (2) UV-Visible spectrum analysis and Methylene Blue decolourization test were used to evaluate the photocatalytic properties of different SrTiO3 and TiO2(P-25) powders;
    (3) Naon-sized SrTiXCr(1-X)O3 (X= 0、2、4、8%) powders were prepared by the organic precursor method in order to produce photocatalyst capable of using visible light. Experimental results are given as follows:

    1. Calcinating the 300℃precursor at 450℃ for 12h produced SrTiO3 powders with an average size of 20nm. The produced SrTiO3 powders are not seriously agglomerated.

    2. Results of UV-Visible spectrum analysis and Methylene Blue decolourization test shown that photocatalytic efficiency followed the following order: P-25>industry SrTiO3 powders>SrTiO3 powders produced by the organic precursor method>SrTiO3 powders obtained by the solid state reaction method.

    3. SrTiXCr(1-X)O3 (X= 0、2、4、8%) powder were prepared by calcinating the organic precursor at 450℃ for 24h. For X=2% and 4% samples,the UV-Visible spectrum absorption edge moves to the visible region, but X=8% sample does not produce red-shift presumably due to the unknown phase generated during calcination.

    摘要 ……………………………………………I Abstract ……………………………………………II 誌謝 ……………………………………………III Table of Contents……………………………………… V Contents of Tables……………………………………… VII Contents of Figures…………………………………… VIII Chaper 1 Introduction…………………………………1 1-1前言……………………………………………1 1-2研究目的……………………………………… 2 Chaper 2 Literature Review………………………………3 2-1鈦酸鍶結構簡介…………………………………… 3 2-2鈦酸鍶基本物性…………………………………… 3 2-3固態反應法( Solid State Reaction Method )……………………4 2-4溶膠-凝膠法( Sol-gel Method )……………………………6 2-4-1有機前導物法的缺點………………………………… 9 2-4-2本研究實驗參數制定的想法………………………………9 2-5材料光學性質………………………………………10 2-6光觸媒………………………………………… 12 2-6-1光觸媒分解有機物之機制…………………………… 12 2-6-2能利用可見光之光觸媒……………………………. 13 Chaper 3 Experimental…………………………………18 3-1實驗藥品………………………………………18 3-2實驗步驟………………………………………18 3-2-1起始膠體製備…………………………………. 18 3-2-2前導粉末製備…………………………………. 18 3-2-3前導物分析……………………………………. 18 3-2-4粉末製備與性質分析………………………………. 19 3-3性質分析……………………………………… 22 3-3-1熱行為分析……………………………………. 22 3-3-2結晶相鑑定……………………………………. 22 3-3-3晶徑及粒徑測定…………………………………. 22 3-3-3-1粉末結晶晶徑………………………………. 22 3-3-3-2粉末BET比表面積粒徑…………………………. 23 3-3-4顯微結構觀察……………………………………. 23 3-3-5紫外光可見光譜(UV-Visible )吸收光譜分析………………… 24 3-3-6光催化性質分析…………………………………24 Chaper 4 Results and Discussion……………………………27 4-1商用SrTiO3粉末之性質分析……………………………27 4-2以固態反應法製備SrTiO3粉末之性質分析……………………33 4-3凝膠(Gel)和前導物(Precursor)之性質分析……………………35 4-4前導物(Precursor)和凝膠(Gel)經煆燒所生成SrTiO3粉末之性質分析………41 4-5合成SrTiO3粉末之光催化性質……………………………52 4-5-1 SrTiO3之UV-VIS吸收光譜分析………………………52 4-5-2 SrTiO3光催化分解甲基藍之實驗………………………55 4-6 SrTi(1-X)CrXO3粉末合成及其UV-VIS吸收光譜性質之研究……………59 Chaper 5 Conclusion……………………………………66 Reference…………………………………………67

    Reference
    1. A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, 238, pp. 37-38 (1972)
    2. 牛頓出版社, “牛頓雜誌”, 3, pp. 26-33 (2003)
    3. Z. Zhigang, Ye. Jinhua, S. Kazuhiro, and A. Hironori, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst ,” Nature, 414. pp. 625-627 (2001)
    4. S. Kazuhiro, M. Kazuaki, A. Ryu, A. Yoshimoto, and A. Hironori, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosysnthesis ,” J Photochem. and Photobio. A. , 148, pp. 71-77 (2002)
    5. Hideki Kato and Akihiko Kudo, “Visble–Light—Response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium,” J. Phys. Chem. B , 106, pp. 5029-5034 (2002)
    6. L. K. Templeton and J. A. Pask, “Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2 ,” J. Am. Ceram. Soc., 42(5), pp. 212-216 (1959)
    7. A. Beauger, J. C. Mutin, and J. C. Niepce, “Role and behavior of orthotitanate Ba2TiO4 during the process of BaTiO3 based ferroelectric ceramics,” J. Mater. Sci., 19, pp. 195-201 (1984)
    8. R. A. Terry, “Fundamentals of Ceramic Powder Processing and Synthesis” Academic Press,pp. 170-176
    9. A. Tkach, P. Vilarinho, M. Avdeev, A. Kholkin, and J. Baptista, “Synthesis by sol-gel and characterization of strontium titanate powder,” Adv. Mater. for I Key Eng. Mater., 230-2, pp. 40-43 (2002)
    10. X. Wang, Z. Zhang, and S. Zhou, “Preparation of nano-crystalline SrTiO3 powder in sol-gel process,” Mater. Sci. and Eng. B-Solid State Mater., 86 (1), pp. 29-33 (2001)
    11. C. Kao and W. Yang, “Microstructure and sintering properties of La2O3-doped SrTiO3 ceramics from crystalline powders,” Mater. Tran. JIM , 37 (2), pp. 142-149 (1996)
    12. C. Kao and W. Yang, “Preparation and electrical characterisation of strontium titanate ceramic from titanyl acylate precursor in strong alkaline solution,” Ceram. Inter., 22 (1), pp. 57-66 (1996)
    13. K. D. Budd and D. A. Payne, “Preparation of strontium titanate ceramics and internal boundary layer capacitors by the Pechini Method,” Mater. Res. Soc. Symp. Proc., 32,pp. 239-244(1984)
    14. D. Hennings and W. Mayr, “Thermal decomposition of (BaTi) citrates into barium titanate,” J. Solid State Chem., 26, pp 329-338(1978)
    15. J. P. Coutures, P. Odier, and C. Proust, “Barium titanate formation by orangic resins formed with mixed citrates,” J. Mater. Sci., 27, pp. 1849 -1856(1992)
    16. M. P. Pechini, “Method of preparing lead and alkaline earth titanates an niobates and coating method using the same to form a capacitor,” U. S. Pat., No.3 330 697 ,Jul. 11 ,1967
    17. S. G. Cho, P. F. Johnson, and R. A. Condrate Sr, “Thermal decomposition of (Sr, Ti) orangic precursors during the Pechini Method,” J. Mater. Sci., 25, pp. 4738-4744(1990)
    18. M. Kakihana, Y. Nakamura, M. Arima, M. Yashima, and M. Yoshimura, “Polymerized complex route to the synthesis of pure SrTiO3 at reduced temperatures : implication for formation of Sr-Ti heterometallic citric acid complex,” J. Sol-Gel Sci. Tech., 12, pp. 95-109(1998)
    19. E. R. Leite, C. M. G. Sousa, E. Longo, and J. A. Varela, “Influence of polymerization on the synthesis of SrTiO3: Part I. characteristics of the polymeric precursors and their thermal decomposition,” Ceram. Int., 21, pp.143-152 (1995)
    20. M. Arima, M. Kakihana, Y. Nakamura, M. Yashima, and M. Yoshimura, “Polymerized complex route to barium titanate powders using barium-titanium mixed-metal citric acid complex,” J. Am. Ceram. Soc., 79(11), pp. 2847 –2856 (1996).
    21. M. Kakihana and M. Arima, “Spectroscopic characterization of precursors used in the Pechini-type polymerizable complex processing of barium titanate,” Chem. Mater., 11(2), pp 438-450 (1999)
    22. M. Kakihana, “Sol-gel preparation of high temperature superconducting oxides,” J. Sol-Gel Sci. Tech., 6, pp. 7-55(1996)
    23. E. R. Leite, C. M. G. Sousa, E. Longo, and J. A. Varela, “Influence of polymerization on the synthesis of SrTiO3: Part II. particle and agglomerate morphologies,” Ceram. Int., 21, pp.153-158 (1995)
    24. 蔡丕椿,蔡明雄,陳文照,廖金喜 合譯, “材料科學與工程,” 第三版, 全華出版社, pp 4-82 – 4-104
    25. 陳皇鈞, 陶瓷材料概論 (下), 曉園出版社,pp 637-648
    26. W. Li, Y. Wang, and H. Lin, “Band gap tailoring of Nd3+-doped TiO2 nanoparticles,” App. Phys. Lett., 83(20), pp 4143-4145(2003)
    27. S. Oh, S. Kim, J. E. Lee, T. Ishigaki, and D. Park, “Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma.” Thin Solid Film., 435, pp 252-258(2003)
    28. W. Li, S. I. Shah, C. P. Hung, O. Jung, and C. Ni, “Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles.” Mater. Sci. and Eng., B96, pp. 247-253(2002)
    29. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai, “Band gap narrowing of titanium dioxide by sulfur doping,” App. Phys. Lett., 81(3), pp 454-456(2002)
    30. P. Yang, C. Lu, N. Hua, and Y. Du, “Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis.” Mater. Lett., 57, pp 794-801(2002)
    31. A. Fuerte, M. D. Hernandez-Alonso, A. J. Maira, A. Martinez-Arias, M. Fernandez-Garcia, J. C. Conesa, and J. Soria, “Visible light-activated naoosize doped- TiO2,” Chem. Comm., pp 2718-2719(2001)
    32. S. Klosek and D. Raftery, “Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol,” J. Phys. Chem. B., 105, pp 2815-2819(2001)
    33. G. Zhao, H. Kozuka, H. Lin, and T. Yoke, “Sol-gel preparation of Ti1-xVxO2 solid solution film electrodes with conspicuous photoresponse in the visible region,” Thin Solid Film., 339, pp 123-128(1999)
    34. 許樹恩, 吳泰伯, “X光繞射原理與材料結構分析,” 修定版, 中國材料科學學會, pp 422(1996)
    35. M. Anpo, Y Ichihashi, M. Takeuchi, and H. Yamash “Design of unique titamium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reaction under visible light irradiation,” Research on Chemical Intermediates., .24(42), pp143-149(1998)

    下載圖示 校內:2005-06-08公開
    校外:2005-06-08公開
    QR CODE