| 研究生: |
歐思辰 Ou, Szu-Chen |
|---|---|
| 論文名稱: |
多變量量測系統重複性與再現性的研究 Gauge Repeatability and Reproducibility Study for Multivariate Measurement Systems |
| 指導教授: |
潘浙楠
Pan, Jeh-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 量測系統重複性與再現性分析 、多變量量測系統分析 、P/T比值 |
| 外文關鍵詞: | gauge repeatability and reproducibility, multivariate measurement system analysis, precision-to-tolerance ratio |
| 相關次數: | 點閱:134 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
量測系統分析(measurement system analysis; MSA)在協助品管人員改善產品品質的過程中扮演關鍵性角色,在執行製程指標能力研究前,品管工程師必須先針對量測系統之重複性與再現性(gauge repeatability and reproducibility; GRR)進行分析藉以評估量測系統之精密度是否適當。傳統量測系統分析方法僅考慮單一品質特性,然而隨著現代科技之發展,工業產品通常具有多重品質特性,因此量測系統分析亦應具有分析多重品質特性(即多變量品質特性)之能力。
本研究針對Majeske (2008)提出之多變量P/T比值(precision-to-tolerance ratio)未考量規格公差相關性之缺點進行修正,並與Wang and Yang (2007)提出之多變量P/T 比值進行比較,模擬結果證實我們提出之P/T比值最為穩健亦較接近實際值。另外,本研究利用修正後P/T比值之信賴區間探討GRR分析時不同參數(品質特性數v、產品個數p、量測人員數o及重複量測次數r)間之關係,並發現品質特性數v與產品個數p兩參數會影響估算P/T比值之準確度。
最後,我們將研究成果加以整理寫成執行多變量GRR分析之標準作業流程(S.O.P.),此一程序可作為品管人員未來執行多變量量測系統分析之參考。
A gauge repeatability and reproducibility (GRR) study for analyzing gauge variation needs to be conducted prior to the process capability analysis. In this research, we proposed a new precision-to-tolerance ratio (P/T) for multivariate measurement system by considering the correlation coefficients among tolerances. And the simulation results show that our revised P/T ratio outperforms the existing one in terms of robustness and accuracy. Moreover, the optimal allocation of several parameters such as the number of quality characteristics (v), sample size of parts (p), number of operators (o) and replicate measurements (r) is discussed using the confidence interval (C.I.) of the revised P/T. Finally, a standard operating procedure (S.O.P.) to perform GRR study for multivariate measurement systems is summarized based on the research results. Hopefully, it can be served as a useful reference for quality practitioners when conducting GRR study for a multivariate measurement system analysis (MSA) in industries.
1.AIAG, “Measurement system analysis”, Automotive Industry Action Group, Detroit, New York, 2010.
2.Amemiya, Y., “What should be done when an estimated between-group covariance matrix is not nonnegative definite?”, The American Statistician, Vol. 39, No. 2, pp. 112-117, 1985.
3.Anderson, T. W., “Asymptotic theory for principal component analysis”, Annals of Mathematical Statistics, Vol. 34, pp. 122-148, 1963.
4.Anderson, T. W., “An introduction to multivariate statistical analysis”, John Wiley & Sons, New York, 2003.
5.Calvin, J. A., and Dykstra, R. L., “Least squares estimation of covariance matrices in balanced multivariate variance components models”, Journal of the American Statistical Association, Vol. 86, No. 414, pp. 388-395, 1991.
6.Jackson, J. E., “Principal components and factor analysis: part I-principal components”, Journal of Quality Technology, Vol. 12, No. 4, pp. 201-213, 1980.
7.Majeske, K. D., “Approval criteria for multivariate measurement systems”, Journal of Quality Technology, Vol. 40, No. 2, pp.140-153, 2008.
8.Mardia, K. V., “Tests of univariate and multivariate normality”, Handbook of Statistics, Vol. 1, pp. 279-320, 1980.
9.Montgomery, D. C., “Introduction to statistical quality control”, John Wiley & Sons, New York, 2007.
10.Montgomery, D. C., and Runger, G. C., “Gauge capability analysis and designed experiments. Part II: experimental design models and variance component estimation”, Quality Engineering, Vol. 6, No. 2, pp. 289-305, 1993.
11.Osma, A., “An assessment of the robustness of gauge repeatability and reproducibility analysis in automotive components”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 225, pp. 895-912, 2011.
12.Pan, J. N., “Determination of the optimal allocation of parameters for gauge repeatability and reproducibility study”, International Journal of Quality & Reliability Management, Vol. 21, No. 6, pp. 672-682, 2004.
13.Pan, J. N., and Lee, C. Y., “New capability indices for evaluating the performance of multivariate manufacturing processes”, Quality and Reliability Engineering International, Vol. 26, No. 1, pp.3-15, 2010.
14.Peruchi, R. S., Balestrassi, P. P., de Paiva, A. P., Ferreira, J. R., and de Santana Carmelossi, M., “A new multivariate gage R&R method for correlated characteristics”, International Journal of Production Economics, Vol. 144, No. 1, pp. 301-315, 2013.
15.Taam, W., Subbaiah, P., and Liddy, J. W., “A note on multivariate capability indices”, Journal of Applied Statistics, Vol. 20, No. 3, pp. 339-351, 1993.
16.Wang, F. K., and Yang, C. W., “Applying principal component analysis to a GR&R study”, Journal of the Chinese Institute of Industrial Engineers, Vol. 24, No. 2, pp. 182-189, 2007.