| 研究生: |
阮氏黃豔 Diem, Nguyen Thi Hoang |
|---|---|
| 論文名稱: |
水熱法製備鉻摻雜二氧化鈦奈米柱及其光觸媒之應用 Hydrothermal Synthesis of Cr-Doped TiO2 nanorods for the Application of Photocatalyst |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 共同指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 二氧化鈦奈米柱 、水熱法 、光催化 、鉻摻雜 |
| 外文關鍵詞: | TiO2, Hydrothermal, Photocatalyst, Cr doping |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究論文乃利用水熱法成長金紅石相的二氧化鈦奈米柱於矽基板上。藉由改變前驅物的濃度、製程溫度、製程的時間及pH值來改變奈米柱的結構。水熱法成長參數為0.04莫耳濃度的四丁氧基鈦於160 °C的溫度三個小時在二氧化鈦晶種層上為最佳的參數,而晶種層乃由溶液溶膠法製德後再經700 °C一小時的燒結製得。因二氧化鈦能隙為3.2電子伏特,為紫外光波段,故在其應用上受到限制。藉由摻雜不同濃度的鉻來改變二氧化鈦奈米柱之能隙,並利用X光繞射儀、二次電子顯微鏡、穿透式電子顯微鏡、拉曼及紫外光-可見光光譜儀來分析不同濃度摻雜的二氧化鈦奈米柱之結晶結構、表面形貌、光學性質等特性。最後在紫外光跟可見光的照射下,利用甲基藍做為反應基準物來測量鉻摻雜的二氧化鈦之光觸媒活性,並發現摻雜7%莫耳濃度的鉻能達到最佳的改善效果。
In this study, the rutile TiO2 nanorods (TNRs) were grown on a TiO2 seed layer coated Si substrate by a hydrothermal technique. We have studied varied parameters, including precursor concentration, temperature, reaction time and pH in the hydrothermal reaction to see how they affect the TiO2 nanorods growth. We found the best condition for hydrothermal growth is 0.04M TBOT at 160 °C for 3 hrs on TiO2 seed layer which annealed at 700 °C for 1 hr.
Due to a wide band gap (Eg ~ 3.3 eV) of TiO2, its application is limited in the UV range. In order to further extend its absorption of visible light, Cr-doped TiO2 nanorods were synthesized by a hydrothermal treatment. XRD, SEM, TEM, Raman, and UV-Vis were carried out to determine how different concentrations of Cr dopant affected crystallinity, structure, morphology, and optical properties of TiO2 nanorods. The photocatalytic activity of Cr-TiO2 was investigated using methylene blue as a targeted pollutant under both UV and visible light irradiation. We found that doping of Cr with suitable ratio (7% mol) can significantly improve the photocatalytic activity of TiO2 nanorod under a visible light.
References
[1] S. S. Mao and X. Chen, International Journal of Energy Research 31,619 (2007).
[2] G. W. Crabtree, Physics Today 40, (2007).
[3] A. G. V. U. Hoffmann, Springer (2005).
[4] M. Gratzel, Nature 414, 338 (2001).
[5] M. Gratzel, Philos Transact A Math Phys Eng Sci 365, 993 (2007).
[6] J. C. S. Wu, H.-M. Lin and C.-L. Lai, Applied Catalysis A: General 296, 194 (2005).
[7] M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, Catalysis Today 122, 51 (2007).
[8] X. Chen and S. S. Mao, Chem Rev 107, 2891 (2007).
[9] B. Ohtani, Y. Ogawa and S.-i. Nishimoto, The Journal of Physical Chemistry B 101, 3746 (1997).
[10] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293, 269 (2001).
[11] U. Diebold, Surface Science Reports 48, 53 (2003).
[12] A. T. Paxton and L. Thiên-Nga, Physical Review B 57, 1579(1998).
[13] G. J. Banerjee S, Muraleedharan P, Current Sci. 90, 1378 (2006).
[14] K. Szacilowski, W. Macyk, A. Drzewiecka-Matuszek, M.
Brindell and G. Stochel, Chem Rev 105, 2647 (2005).
[15] O. Carp, Progress in Solid State Chemistry 32, 33 (2004).
[16] A. Hagfeldt and M. Graetzel, Chemical Reviews 95, 49 (1995).75
[17] A. Mills and S. Le Hunte, Journal of Photochemistry and
Photobiology A: Chemistry 108, 1 (1997).
[18] D. W. Bahnemann, C. Kormann and M. R. Hoffmann, The
Journal of Physical Chemistry 91, 3789 (1987).
[19] K. Sivula, F. L. Formal and M. Grätzel, Chemistry of Materials 21, 2862 (2009).
[20] S. Zhang, Z. Chen, Y. Li, Q. Wang, Materials Chemistry and Physics 107, 1 (2008).
[21] D. M. Blake, P.-C. Maness, Z. Huang, E. J. Wolfrum, LSPR 28, 1 (1999).
[22] V. M. Cristante, A. G. S. Prado, S. M. A. Jorge, J. P. S. Valente,Journal of Photochemistry and Photobiology A: Chemistry 195, 23 (2008).
[23] A. L. Linsebigler, G. Lu and J. T. Yates, Chemical Reviews 95, 735 (1995).
[24] M. Grätzel, Journal of Photochemistry and Photobiology A: Chemistry 164, 3 (2004).
[25] N. N. Bwana, Journal of Nanoparticle Research 11, 1917 (2008).
[26] K. Yu and J. Chen, Nanoscale Research Letters 4, 1 (2008).
[27] M. Quintana, T. Edvinsson, A. Hagfeldt and G. Boschloo, The Journal of Physical Chemistry C 111, 1035 (2006).
[28] C. R. Martin and P. Kohli, Nat Rev Drug Discov 2, 29 (2003).
[29] Y. Wan, J. Ma, W. Zhou, Y. Zhu, Applied Catalysis A: General 277, 55 (2004).
[30] J. Pena, M. Vallet-Regi and J. San Roman, J Biomed Mater Res 7635, 129 (1997).
[31] R. Gangopadhyay and A. De, Chemistry of Materials 12, 608(2000).
[32] C. Burda, Y. Lou, X. Chen, A. C. S. Samia, Nano Letters 3, 1049(2003).
[33] X. Chen and C. Burda, J Am Chem Soc 130, 5018 (2008).
[34] X. Chen, Y. B. Lou, A. C. S. Samia, C. Burda and J. L. Gole,Advanced Functional Materials 15, 41 (2005).
[35] W. Choi, A. Termin and M. R. Hoffmann, The Journal of
Physical Chemistry 98, 13669 (1994).
[36] M. M. Joshi, N. K. Labhsetwar, P. A. Mangrulkar, S. N. Tijare,Applied Catalysis A: General 357, 26 (2009).
[37] J. Gautron, P. Lemasson and J.-F. Marucco, Faraday Discussions of the Chemical Society 70, 81 (1980).
[38] B. Xin, Z. Ren, P. Wang, J. Liu, Applied Surface Science 253, 4390 (2007).
[39] R. Li, W. Chen and W. Wang, Separation and Purification
Technology 66, 171 (2009).
[40] P. Vijayan, C. Mahendiran, C. Suresh and K. Shanthi, Catalysis Today 141, 220 (2009).
[41] M. A. Khan, D. H. Han and O. B. Yang, Applied Surface Science 255, 3687 (2009).
[42] G. K. Prasad, B. Singh, K. Ganesan, A. Batra, J Hazard Mater 167, 1192 (2009).
[43] Z. M. El-Bahy, A. A. Ismail and R. M. Mohamed, J Hazard
77 Mater 166, 138 (2009).
[44] C. Wang, Y. Ao, P. Wang, J. Hou and J. Qian, Materials Letters 64, 1003 (2010).
[45] C. Wang, Y. Ao, P. Wang, J. Hou, J Hazard Mater 178, 517(2010).
[46] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes, Solar Energy Materials and Solar Cells 90, 2011 (2006).
[47] J. Papp, H. S. Shen, R. Kershaw, K. Dwight and A. Wold,
Chemistry of Materials 5, 284 (1993).
[48] K. Adachi, K. Ohta and T. Mizuno, Solar Energy 53, 187 (1994).
[49] N. Wu, International Journal of Hydrogen Energy 29, 1601 (2004).
[50] M. Turner, V. B. Golovko, O. P. Vaughan, P. Abdulkin, Nature 454, 981 (2008).
[51] S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, Water Res 38, 3001 (2004).
[52] O. Diwald, T. L. Thompson, E. G. Goralski, S. D. Walck and J. T. Yates, The Journal of Physical Chemistry B 108, 52 (2003).
[53] Y. Ao, J. Xu, S. Zhang and D. Fu, Applied Surface Science 256, 2754 (2010).
[54] J. C. Yu, Yu, Ho, Jiang and Zhang, Chemistry of Materials 14, 3808 (2002).
[55] J. H. Park, S. Kim and A. J. Bard, Nano Letters 6, 24 (2005).
[56] S. K. Pradhan, P. J. Reucroft, F. Yang and A. Dozier, Journal of Crystal Growth 256, 83 (2003).78
[57] A. M. More, T. P. Gujar, J. L. Gunjakar, C. D. Lokhande and O.-S. Joo, Applied Surface Science 255, 2682 (2008).
[58] S. M. A.Sadeghzadeh Attar, F.Hajiesmaeilbaigi, M.Sasani
Ghamsari, J. Mater. Sci. Technol. 23, 611 (2007).
[59] Z. Qi, Y. J. Kim and W. I. Lee, Solid State Phenomena 119, 67 (2007).
[60] L. Meng, A. Ma, P. Ying, Z. Feng and C. Li, Journal of
Nanoscience and Nanotechnology 11, 929 (2011).
[61] C. P. K.E.Dre xler, William Morrow & Co.Inc. ,NY (1991).
[62] Y. Li, M. Guo, M. Zhang and X. Wang, Materials Research
Bulletin 44, 1232 (2009).
[63] S. Z. Chu, S. Inoue, K. Wada, S. Hishita and K. Kurashima, Advanced Functional Materials 15, 1343 (2005).
[64] S. K. Mohapatra, N. Kondamudi, S. Banerjee and M. Misra, Langmuir 24, 11276 (2008).
[65] B. Liu and E. S. Aydil, Journal of the American Chemical Society 131, 3985 (2009).
[66] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, Nano Letters 8, 3781 (2008).
[67] Y. Li, M. Zhang, M. Guo and X. Wang, Rare Metals 29, 286 (2010).
[68] H.-E. Wang, Z. Chen, Y. H. Leung, C. Luan, Applied Physics Letters 96, 263104 (2010).
[69] K. Byrappa and T. Adschiri, Progress in Crystal Growth and Characterization of Materials 53, 117 (2007).79
[70] M. H. K. Byrappa, William Andrew, NY (2001).
[71] M. Yoshimura, Suchanek, W., Byrappa, K., Material Research Society Bulletin 25, 17 (2000).
[72] K. Byrappa, John Wiley and Sons, London (2005).
[73] X. H. Xia, Y. Liang, Z. Wang, J. Fan, Materials Research Bulletin 43, 2187 (2008).
[74] S. P. S.Chainarong, L.Sikong, S.Niyomwas, 7th Eco-Energy and Materials Science and Engineering Symposium, Chiang Mai, Thailand( 2009).
[75] H. Zhu, J. Tao, T. Wang and J. Deng, Applied Surface Science(2011).
[76] J. Song and S. Lim, The Journal of Physical Chemistry C 111,596 (2006).
[77] M. R. Ranade, A. Navrotsky, H. Z. Zhang and J. F. Banfield,Proceedings of the National Academy of Sciences of the United States of America 99, 6476 (2002).
[78] E. Hosono, S. Fujihara, K. Kakiuchi and H. Imai, Journal of the American Chemical Society 126, 7790 (2004).
[79] L. Vayssieres, K. Keis, S.-E. Lindquist and A. Hagfeldt, The Journal of Physical Chemistry B 105, 3350 (2001).
[80] C.-T. Dinh, T.-D. Nguyen, F. Kleitz and T.-O. Do, ACS Nano 3, 3737 (2009).
[81] D. Tang, K. Cheng, W. Weng, C. Song, Thin Solid Films 519, 7644 (2011).
[82] R. Bechstein, M. Kitta, J. Schütte, A. Kühnle and H. Onishi, The 80 Journal of Physical Chemistry C 113, 3277 (2009).
[83] J. C. Parker and R. W. Siegel, Applied Physics Letters 57, 943(1990).