| 研究生: |
高國倫 Kao, Kuo-Lun |
|---|---|
| 論文名稱: |
接觸式金屬轉印與體加工蝕刻製程應用於三維次微米結構之製作 Metal Contact Printing and Silicon Bulk Machining for Fabrication of Sub-Micrometer Three Dimensional Structures |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 金屬轉印 、矽體加工 、次微米三維結構 、熱壓印 |
| 外文關鍵詞: | Contact printing lithography, Silicon bulk machining, Sub-micrometer three dimensional structures, Nano-lithography |
| 相關次數: | 點閱:114 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一以接觸式金屬轉印與矽體加工蝕刻技術應用於三維次微米結構之製程。其中以接觸式金屬轉印成功的在矽晶圓上定義出線寬 300 nm ~ 1μm週期排列的微米/次微米圖形,配合矽體加工蝕刻完成倒金字塔結構矽模仁,最大面積可達4〞。以上述技術製作出的矽模仁為核心,延伸出兩項應 用。
第一,以倒金字塔矽模仁為母模,翻製出h-PDMS (hard-Polydimethysilxane) 模仁,並應用實驗中測出的最佳熱壓印參數,讓各線寬光阻皆可以完整填滿h-PDMS模穴,且最薄的光阻殘餘層可控制在50 nm以下,再以此光阻為蝕刻遮罩,利用乾式蝕刻將結構轉移至二氧化矽基板。此方式可降低模仁損耗,並有效定義大面積的三維微結構,突破黃光微影或需能量束之微影技術,在製作三維微結構時的製程限制
;由於結構具有三維形貌與次微米等級的特點,未來的應用甚廣,例如做為破壞光學全反射的結構。
第二,三維立體光罩製作。仍以三維倒金字塔矽模仁為母模,利用翻製出以玻璃為背板的h-PDMS模仁,在其表面鍍上金屬層,並利用光阻厚度、乾式蝕刻與金屬蝕刻液濃度的搭配來控制光罩開孔,最小光罩開孔為120 nm,並成功曝出線寬300 nm以上的點狀陣列。此方式不僅可快速地製作出次微米光罩,亦可節省成本;更因為光罩圖形是由奈米壓印所定義,其圖形週期小,未來若搭配奈米定位平台進行微影曝光,將可快速繪製出小線寬、大面積與特殊的圖案。
This study reports a new method for fabricating 3D sub-micron structures. The method is based on metal contact printing lithography and silicon bulk machining. The metal contact printing lithography can directly transfer a patterned metal layer to the surface of a silicon substrate. Patterns with dot-arrayed features with a dot diameter ranging from 300 nm to 1μm are successfully obtained over large area. Using the transferred metal pattern as an etching mask, silicon anisotropic bulk machining is utilized to obtain 3D inverted sub-micrometer pyramid structures. This silicon mold which has 3D sub-micrometer structures serves as a master mold for following applications.
Firstly, an h-PDMS stamp is replicated from the silicon mold and used to imprint 3D pyramid micro-structures on a photo-resist layer deposited on top of silicon oxide layer via hot embossing method. In this experiment, the photo-resist filled into the mold cavity completely and the minimum thickness of residual layer was controlled down to only 50 nm. The 3D photo-resist structures are subsequently used as an etching mask and the 3D pattern is transferred onto oxide layer through plasma etching process. Advantages of this method for 3D structure fabrication include large patterning area, reduced fabrication steps, and low cost.
Secondly, the pyramid-shaped cones on the h-PDMS stamp replicated from the Si mold were first deposited with a gold layer and then a polymer layer. A dry etching method is applied to gradually remove the polymer overlay step by step until only the tips of pyramids are exposed. The exposed gold films on the pyramid tips are then remove by chemical etching. Finally, arrayed openings with an aperture size ranging from 120 nm to 480 nm in diameter are obtained. This 3D photo-mask with arrayed and sub-micrometer openings can be used for nano-lithography, and feature size of 300 nm and above are obtained. By combining this 3D photo-mask with nano-positioning stages, it is possible to achieve mask-less nano-lithography.
[1]P. R. Fabian and S. Y. Chou,“Lithography and other patterning techniques for future electronics,”Proceedings of the IEEE, 96, 2 (2008).
[2]ITRS, ITRS roadmap, (2005). [Online]. Available:http://www.itrs.net/
[3]C. T. Lim, H. Y. Low, J. K. K. Ng, W. T. Liu, Y. Zhang,“Nanoimprint lithography of sub-100 nm 3D structures,” Microelec. Eng., 78-79, 653-658 (2005).
[4]M. M. Alkaisi, W. Jayatissa, M. Konijn,“Multilevel nanoimprint lithography,”Current Applied Physics, 4, 111–114 (2004).
[5]Y. C. Lee and C. Y. Chiu,“Micro-/nano-lithography based on thecontact transfer of thin film and mask embedded etching,”J. Micromech. Microeng, 18, 075013 (2008).
[6]S. Y. Chou, P. R. Krauss and P. J. Renstrom,“Imprint of sub‐25 nm vias and trenches in polymers,”Appl. Phys Lett. 67, 21 (1995).
[7]M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz,“Fabrication of nanostructures using a UV-based imprint technique,”Microelec. Eng., 53, 233-236 (2000).
[8]Y. Xia, D. Qin, and G. M. Whitesides,“Microcontact printing with a cylindrical rolling stamp: A practical step toward automatic manufacturing of patterns with submicrometer-sized features,”Adv. Mater., 8, 12 (1996).
[9]M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelec. Eng., 61-62, 441-448 (2002).
[10]Y. Xia and G. M. Whitesides,“Soft lithography,” Annu.Rev. Mater. Sci.,28, 153-184, (1998).
[11]謝易達,李永春,奈米壓印與金屬轉印技術應用於提升發光二極體發光效率,國立成功大學機械工程學系碩士論文,民國99年。
[12]J. Frühauf., Shape and Functional Elements of the Bulk Silicon Microtechnique:A Manual of Wet-Etched Silicon Structures, Heidelberg :Springer-Verlag Berlin Heidelberg, Berlin (2005).
[13]Marc J. Madou, Fundamentals of Microfabrication:The Science of Miniaturization, CRC press, Boca Raton (2002).
[14]Y. J. Lee, T. C. Lu, H. C. Kuo and S. C. Wang, “High Britness GaN-Based Light-Emitting Diodes,” J. Display Tech., 3, 118-125 (2007).
[15]P. K. Singh, R. Kumar, M. Lal, S. N. Singh and B. K. Das,“Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions,”Solar Energy Materials & Solar Cells, 70, 1 (2001).
[16]M. J. Huang, C. R. Yang, Y. C. Chiou and R. T. Lee,“Fabrication of nanoporous antireflection surfaces on silicon,” Solar Energy Materials & Solar Cells, 92, 1352– 1357 (2008).
[17]H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, G.H. Wang, “Improvement of the performance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching,” Solid-State Electronics, 52, 962-967 (2008).
[18]H. Y. Shin, S. K. Kwon, Y. I. Chang, M. J. Cho and K. H. Park, “Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate,”J. Crystal Growth, 311, 4167-4170 (2009).
[19]Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li and C. C. Kao, “Pattern-size of nitride-based LEDs grown on patterned sapphire substrates ,” J. Crystal Growth, 311, 2973-2976 (2009).
[20]H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. H. Wang,“Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,”J. Appl. Phys., 103, 014314 (2008).
[21]C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau and S. J. Cheng,“Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys Lett. 93, 081108 (2008).
[22]B.J. Kim, M. Mastro, H. Jung, H.Y. Kim, S.Y. Kim, R.T. Holm, J. Hite, C.R. Eddy Jr, J. Bang and J. Kim, “Inductivitely coupled plasma etching of nano-patterned sapphire for filp-chip GaN light emitting diode applications,”Thin Solid Films, 516, 7744-7747 (2008).
[23]K. Han, K. S. Kang and J. Kim,“Au-pattern fabrication on a cellulose film using a polyurethane acrylate mold”, J. Micromech. Microeng. 19, 035010 (2009).
[24]C. P. Hernandez., J. S. Kim, L. J. Guo and P. F. Fu, “High-Throughput and Etch-Selective Nanoimprinting and Stamping Based on Fast- Thermal-Curing Poly(dimethylsiloxane)s,”Adv. Mater., 19 , 1222-1222 (2007).
[25]K. M. Choi and J. A. Rogers ,“A Photocurable Poly(dimethylsiloxane) Chemistry Designed for Soft Lithographic Molding and Printing in the Nanometer Regime,”J. Am. Chem. Soc., 125, 4060-4061 (2003) .
[26]K. Mohamed and M. M. Alkaisi,“Three-dimensional pattern transfer on quartz substrates,” Microelectronic Eng., 87, 1463–1466 (2010).
[27]F. Huo, G. Zheng, X Liao, L. R. Giam, J. C. X. Chen, W. Shim and C. A. Mirkin,“Beam pen lithography,”Nature Nanotech., 5, 637-640 (2010).
[28]F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, C. A. Mirkin,“Polymer Pen Lithography,”Science, 321, 1658-1660 (2008).