簡易檢索 / 詳目顯示

研究生: 劉雅菁
Liou, Ya-Jing
論文名稱: 以ZnMn2O4/SiO2吸收劑高溫去除硫化氫之研究
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 139
中文關鍵詞: SiO2ZnMn2O4硫化氫
相關次數: 點閱:43下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著石油、天然氣等能源的日益枯竭,如何淨潔利用蘊藏量最豐富的煤炭能源,將是未來能源發展之重要課題。由於煤炭氣化複循環發電技術(IGCC)無論在技術成熟性、能源效率及環保性能都是最卓越,因此將會是未來發電的主流,現在商業運轉之大型煤炭氣化複循環發電機組皆使用溼式商業化之除硫程序,然而溼式除硫必須用水來冷卻煤氣,使系統熱效率降低,為提高熱效率降低發電及環保成本,世界各國皆在研發尋找高溫下乾式除硫方法。
      本研究探討以自行製備之ZnMn2O4/SiO2吸收劑來吸收處理硫化氫,研究成果分成下列幾點探討:
    1. 負載於不同載體之鋅錳合金吸收劑之脫硫效能以負載於SiO2及ZrO2之吸收劑脫硫效果較好,負載於-Al2O3之吸收劑脫硫效果較差。
    2. 新鮮吸收劑活性金屬之主要結構為ZnMn2O4晶相,而吸收劑脫硫後之晶相主要有ZnS、MnS及Mn0.6Zn0.4S,Mn0.6Zn0.4S之形成應為MnS及ZnS於高溫下反應所生成的。
    3. 長期操作實驗部份,我們發現隨著脫硫-再生循環次數增加,利用率有逐漸下降之趨勢,由孔洞分析數據推論吸收劑再生後有燒結的情形,推測吸收劑利用率降低與BET表面積嚴重減少有關。
    4. 以不同操作參數來觀察吸收劑利用率改變的情形,發現一氧化碳濃度增加、氫氣濃度減小吸收劑利用率提高,此現象與Water-shift reaction有關;而空間流速在3,000~15,000 ml∙hr-1∙g-1之間時脫硫容量受空間流速之影響並不顯著;硫化氫進流濃度及吸收劑粒徑大小則對吸收劑利用率無顯著之影響。
    5. 由動力研究發現,第一型衰退模式較符合實驗數據,所求得之活化能為98.8 kJ/mole,碰撞因子A = 1. 9 × 1013。

      Because of the energy of petroleum and natural gas are getting exhausted, therefore, how to use the most abundant energy of coal cleanly which is the most improtant project for energy development in the future. Such as the Integrated Gasification Combined Cycles (IGCC) possessing the excellent mature technology, energy efficiency and environmental performance will be the main technology for the electric power generation in the future. Nowadays, all commercial IGCC power plants utilize wet desulfurization processes to remove H2S from hot coal gas. However, coal gas was cooled by the wet processes would be decrease the thermal efficiency of the system significantly. Therefore, high-temperature removal of H2S techniques are the targets for the researchers in this field.
      Desulfurization of hot coal gas using homemade ZnMn2O4/SiO2 sorbent in a fixed bed reactor was conducted in this study. The explanation of results can be divided into five major parts.
    1. The ZnMn2O4 sorbent supported on SiO2 and ZrO2 exhibit higher sorbent utilization and the ZnMn2O4 sorbent supported on γ-Al2O3 exhibit the poor performance.
    2. ZnMn2O4, is the major crystalline phase for the fresh sorbent. After sulfidation experiments, ZnS, MnS, and Mn0.6Zn0.4S are the distint products for the sulfided sorbent. The formation of Mn0.6Zn0.4S may be attributed to the reation between MnS and ZnS within high temperature.
    3. The utilization of the sorbent decreases significantly while sulfuration-regeneration cycles increases. From the results of pore analyses, we found that sintering taked place during the regeneration process. For this reason, we infer that the reduction of the activity maybe associated with the loss of BET surface area.
    4. The effects of operating factors, such as space velocity, CO inlet concentration, H2 inlet concentration and H2S inlet concentration on the removal of H2S were performed. The results show that the sorbent utilization increases with the CO concentration and decrease with the H2 concentration. This can be explained through the water-shift reaction. Space velocity between 3,000~15,000 ml•hr-1•g-1, H2S concentration between 5,000~20,000 ppm and particle size of the sorbent, however, maintains nearly constant sorbent utilization in the operation conditions.
    5. In the operating range of this study, we can find that the deactivation model typeⅠ is the most suitable model to fit this study. We obtain the activation energy Ea = 98.8 kJ/mole, frequency factor A = 1.9 × 1013.

    摘要 I Abstract II 目錄 A 表目錄 D 圖目錄 E 第一章 前言 1 1-1 研究動機 1 1-2 研究內容與架構 3 第二章 文獻回顧 5 2-1 IGCC簡介 5 2-2 硫化氫之特性 7 2-2.1 硫化氫之來源 7 2-2.2 硫化氫之性質 7 2-2.3 硫化氫之危害 8 2-3 硫化氫之控制技術 10 2-3.1 濕式硫化氫脫除技術 10 2-3.2 乾式脫除硫化氫技術 13 2-4 吸收劑特性 17 2-5 吸收劑之選擇 19 2-5.1 單一金屬氧化物吸收劑 20 2-5.2 混合型吸收劑 22 2-5.3 載體型吸收劑 23 2-6 吸收劑之製備 24 2-7 吸收劑活性的衰退 32 2-8 硫化氫轉化之操作參數 33 2-9 吸收劑脫硫反應動力之探討 35 2-9.1 衰退模式 36 2-9.2 Arrhenius表示式 38 第三章 研究方法與實驗設備 39 3-1 研究方法 39 3-1.1 實驗規畫 39 3-1.2 實驗步驟與方法 40 3-2 實驗設備 41 3-2.1 實驗系統裝置 41 3-2.2 試藥與氣體 47 3-2.3 主要儀器原理 48 3-3 預備實驗 72 3-3.1 吸收劑之製備 72 3-3.2 檢量線製作 75 第四章 結果與討論 77 4-1 自製吸收劑之特性分析 78 4-1.1 不同載體之鋅錳合金吸收劑脫硫性能比較 78 4-1.2 掃描式電子顯微鏡分析(SEM)及線掃描 89 4-1.3 硫回收率 90 4-1.4 不同鋅錳合金含量之吸收劑脫硫性能比較 91 4-2 脫硫-再生循環對吸收容量影響之探討 96 4-2.1 吸收劑再生之程溫脫附測試 96 4-2.2 吸收劑活性衰退現象 98 4-2.3 吸收劑鋅、錳含量之分析與BET表面積、孔洞體積及 平均孔徑測值 101 4-2.4 掃描式電子顯微鏡分析(SEM) 106 4-2.5 能量分散光譜儀(EDS) 109 4-2.6 X射線繞射分析(XRD) 112 4-3 改變操作參數對於硫化氫吸收容量影響之探討 115 4-3.1 一氧化碳濃度之影響 115 4-3.2 氫氣濃度之影響 116 4-3.3 硫化氫濃度之影響 116 4-3.4 空間流速之影響 116 4-3.5 載體粒徑大小之影響 117 4-4 脫硫反應動力模式探討 122 4-4.1 第一型之衰退模式 122 4-4.2 第二型之衰退模式 126 4-4.3 模式預測 129 第五章 結論與建議 132 5-1 結論 132 5-2 建議 134 參考文獻 135

    1.林丕旭譯,「煤炭—銜接未來能源之橋樑」,經濟部能源委員會,1980。
    2.劉陽秋,「燒煤發電之先進技術」,台電工程月刊,1995,第571期:1-8。
    3.徐恆文,「煤炭氣化技術發展趨勢」,燃煤新技術研討會,2001。
    4.朱信、曾明宗,「煤炭氣化複循環發電機組可行性之研究」,工業技術研究院能源與資源 研究所、台灣電力公司電力綜合研究所研究計劃期末報告,1991。
    5.Atimtay, A. T., “Cleaner Energy Production with Integrated Gasification Combined Cycle Systems and Use of Metal Oxide Sorbents for H2S Cleanup from Coal Gas”, Clean Products and Processes, 2001:197-208.
    6.中國鋼鐵股份有限公司,「能源密集產業採用淨煤發電技術應用規劃計畫」,經濟部能源委員會,2000。
    7.勞工安全衛生研究所MSDS資料庫:http://www.iosh.gov.tw/frame.htm。
    8.王志成、李福文,「硫化氫新處理技術:SULFA CHECK 與現行方法之比較」,工業污染防治,第30期,1989:197-202。
    9.Nagl, G., “Controlling H2S emission”, Chemical Engineering”, 1997:125-131.
    10.Schaack, J. P., Chan, F., “H2S Scavenging-1”, Oil & Gas Journal, 1989:51-55.
    11.Konttinen, J., Mojtahedi, W., “Gasifier Gas Desulfurization at High Temperature and Pressure”, Repr Kemia-Kemi, 1993, 20:847-851.
    12.林曉菁,「以鹼性添著碳處理硫化氫與甲硫醇效率影響因子之研究」,國立成功大學環境工程學系碩士論文,1996。
    13.Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., “High Temperature Sulfidation-Regeneration of CuO-Al2O3 Sorbent”, Ind. Eng. Chem. Res., 1989, 28:931-940.
    14.Westmoreland, P. R., Harrison, D. P., “Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gases”, Envi. Sci. & Tech., 1976, 10(7):659-661.
    15.Ahmed, M. A., Alonso, L., Palacios, J.M., Cilleruelo, C., Abanades, J. C., “Structural Changes in Zinc Ferrites as Regenerable Sorbents for Hot Coal Gas Desulfurization”, Solid State Ionics, 2000, 138:51-62.
    16.Van der Ham, A. G. J., Vanderbosch, R. H., Prins, W., “Survey of Desulfurization Processes for Coal Gas” In:Atimtay, A. A., Harrison, D. P.(eds), “Desulfurization of Hot Coal Gas”, NATO ASI Ser 1996, 42:117-136.
    17.Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y., “Reactivity and Durability of Iron Oxide High Temperaure Desulfurization Sorbents”, Energy Fuels, 1993, 7(5):632-638.
    18.Zhao, J., Huang,J., Zhang, J., Wang, Y., “Influence of Fly Ash on High Temperature Desulfurization Using Iron Oxide Sorbent”, Energy & Fuel, 2002, 16(6):1585-1590.
    19.Li, Z., Flytzani-Stephanopoulos, M., “Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization”, Ind Eng Chem Res, 1997, 36(1):187-196.
    20.Abbasian, J., Slimane, R. B., “A regenerable copper-based sorbent for H2S removal coal gases”, Ind Eng Chem Res, 1998, 37:2775-2782.
    21.Zeng, Y., Kaytakoglu, S., Harrison, D. P. “Reduced Cerium Oxide as an Efficient and Durable High Temperature Desulfurization Sorbent”, Chem Eng Sci, 2000, 55:4893-4900.
    22.Zeng, Y., Zhang, S., Groves, F. R., Harrison, D. P., “High Temperature Gas Desulfurization with Elemental Sulfur Production” Chem Eng Sci, 1999, 54(15-16):3007-3017.
    23.Bakker, W. J. W., Kapteijn, F., Moulijn, J. A., “A High Capacity Manganese-based Sorbent for Regenerative High Temperature Desulfurization with Direct Sulfur Production Conceptual Process Application to Coal Gas Cleaning”, Chemical Engineering Journal, 2003, 96:223-235.
    24.Alonso, L., Palacios, J. M., “Performance and Recovering of a Zn-doped Manganese Oxide as a Regenerable Sorbent for Hot Coal Gas Desulfurization”, Energy & Fuel, 2002, 16(6):1550-1556.
    25.Elseviers, W. F., Verelst, H., “Transition Metal Oxides for Hot Gas Desulphurisation”, Fuel, 1999, 78:601-612.
    26.Focht, G. D., Ranade, P. V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite:Reduction and Sulfidation Kinetics”, Chem Eng Sci, 1988, 43(11):3005-3013.
    27.Focht, G. D., Ranade, P. V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite:Solid Structural Property Changes”, Chem Eng Sci, 1989, 44(2):215-224.
    28.Pineda, M., Palacios, J. M., Cilleruelo, C., Garcia, E., Ibarra, J. V., “Characterization of Zinc Oxide and Zinc Ferrite Doped with Ti or Cu as Sorbents for Hot Gas Desulfurization”, Appl Surf Sci, 1997, 119:1-10.
    29.Lew, S., Jothimurugesan, K., Flytzani-Stephanopoulo, M., “Sulfidation of Zinc Titanate and Zinc Oxide Solids”, Ind. Eng. Chem. Res., 1992, 31:1890-1899.
    30.Swisher, J. H., Yang, J., Gupta, R. P., “Attirtion-resistant Zinc Titanate Sorbent for Sulfur”, Ind. Eng. Chem. Res., 1995, 34:4463-4471.
    31.Mojtahedi, W., Abbasian, J., “H2S Removal from Coal Gas at Elevated Temperature and Pressure in Fluidized Bed with Zinc Titanate Sorbents, Part 1:cyclic tests”, Energy Fuels, 1995, 9:782-801.
    32.Poston, J. A., “A Reduction in the Spalling of Zinc Titanate Desulfurization Sorbents through Addition of Lanthanum Oxide”, Ind Eng Chem Res, 1996, 35(3):875-882.
    33.Jun, H. K., Lee, T. J., Ryu, S. O., Kim, J. C., “A Study of Zn—Ti-based H2S Removal Sorbents Promoted with Cobalt Oxides”, Ind. Eng. Chem. Res., 2001, 40(16):3547-3556.
    34.Cuong, P. H., Estournes, C., Heinrich, B., Ledoux, M. J., “High Temperature H2S Removal over High Specific Surface Area β-SiC Supported Iron Oxide Sorbent-part 2 Perparation and Characterization”, J. Chem. Soc. Faraday Trans., 1998, 94:443-450.
    35.Ikenaga, N., Chiyoda, N., Matsushima, H., Suzuki, T., “Preparation of Activated Carbon-supported Ferrite for Absorbent of Hydrogen Sulfide at a Low Temperature”, Fuel, 2002, 81:1569-1576.
    36.吳榮宗,「工業觸媒概論」,國興出版社,1989。
    37.Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., “High Temperature Sulfidation-Regeneration of CuO-Al2O3 Sorbent”, Ind. Eng. Chem. Res., 1989, 28:931-940.
    38.Yasyerli, S., Dogu, G., Dogu, T., “Activities of Copper Oxides and Cu-V and Cu-Mo Mixed Oxides for H2S Removal in the Presence and Absence of Hydrogen and Prediction of Deactivation Model”, Ind. Eng. Chem. Res., 2001, 40(23):5206-5214.
    39.Kyotani, T., Kawashima, H., Tomita, A., “High Temperature Desulfurization Reaction with Cu-Containing Sorbents”, Environ. Sci. Technol., 1989, 23(2):218-223.
    40.Satterfield, C. N., “Heterogeneous Catalysis in Industrial Practice 2E”, McGraw-Hill, Inc, 1991.
    41.Hiemenz, P. C., “Principles of Colloid and Surface Chemistry”, M. Dekker, 1986.
    42.Skoog D. A., Holler F. J., Nieman T. A., “Principles of Instaumental Analysis 5E”, Saunders College Publishing, 1998.
    43.Niemantsverdriet, J. W., “Spectroscopy in Catalysis”, Weinheim, 1993.
    44.Lowell, S., Shields, J. E., “Powder Surface Area and Porosity”, Chapman and Hall, 1984.
    45.Benesi, H. A., Bonner, R. V., Lee, C. F., “Determination of Pore Colume of Solid Catalyst”, Analytical Chemistry, 1955, 27:1963-2965.
    46.de Boer, J. H., Lippens, B. C., Linsen, B. G., Broek-hoff, J. C. P., van den Heuval, A., Osinga, Th. J., “The t-curve of Multimolecular N2-adsorption”, Journal of Colloid and Interface Science, 1966, 21:405-414.
    47.孫逸民,「儀器分析」,全威圖書,1997。
    48.莊隆凱,「以Mn2O3/γ-Al2O3吸著劑高溫去除硫化氫之研究」,國立成功大學環境工程學系碩士論文,2002。
    49.李秉傑、邱宏明、王奕凱合譯,「非均勻系催化原理與應用」,渤海堂文化公司,1988。
    50.Pineda, M., Fierro, J. L. G., Palacios, J. M., “Kinetic Behaviour and Reactivity of Zinc Ferrites for Hot Gas Desulphurization”, Journal of Materials Science, 1995, 30:6171-6178.
    51.國立成功大學西文資料庫,理工學科資料庫,參考工具書型,「PCPDFWIN-POWDER DIFFRATION FILE」,International Center for Diffration Data出版,http://cdnet.lib.ncku.edu.tw/doc/pdf.htm.

    下載圖示 校內:立即公開
    校外:2004-06-29公開
    QR CODE