| 研究生: |
林冠宇 Lin, Kuan-Yu |
|---|---|
| 論文名稱: |
應用於行動通訊射頻電路之研製 Development of RF Circuits for Mobile Communication |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 行動通訊 、髮夾式微帶線帶通濾波器 、功率放大器 、寬頻高功率放大器 |
| 外文關鍵詞: | IMT-2020, Bandpass Filter, Power Amplifier, Push-pull Amplifier |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討可應用於IMT-2020(5G)行動通訊標準中的LTE-U和FR1頻段之射頻元件與氮化鎵電晶體於功率放大器之優點。第一章介紹此篇論文的研究背景與IMT-2020(5G)通訊標準的現況。第二章以髮夾式結構設計微帶線帶通濾波器,頻段為5-6GHz,期望能運用在3GPP TS 36.104 Evolved Universal Terrestrial Radio Access (E-UTRA);Base Station (BS) radio transmission and reception中的未授權頻譜(LTE-U)。第三章介紹功率放大器,利用0.3µm製程,π型結構,閘極寬為300µm的GaAs Pseudomorphic High Electron Mobility Transistoer (PHEMT) 電晶體,來設計2-8GHz功率放大器,其頻率範圍涵蓋3GPP TS 38.104 Technical Specification Group Radio Access Network (NR);Base Station Station (BS) radio transmission and reception的FR1頻段。第四章介紹寬頻高功率放大器,利用HEMT GaN電晶體搭配巴倫推挽式放大電路結構來設計,期望放大器在20-520MHz頻段範圍裡能達到Psat =50dBm的飽和輸出功率與飽和增益Gp = 17dB以上。第五章為結論以及未來研究。
This research explores RF components for the LTE-U and FR1 bands, and the advantages of GaN transistors in the IMT-2020 (5G) system standard. The first chapter introduces the research background of this research and the current status of IMT-2020 (5G) communication standards. In second chapter, we design the microstrip line bandpass filter of hairpin structure, the frequency band for 5-6GHz, and expected to be used in Unlicensed spectrum (LTE-U) of 3GPP TS 36.104. The third chapter introduces the power amplifier which using the Pseudomorphic High Electron Mobility Transistoer (PHEMT) transistor with a 300μm gate width and a π type structure to design a 2-8GHz power amplifier. It covers the FR1 band of 3GPP TS 38.104 Technical Specification Group Radio Access Network (NR); Base Station (BS) radio transmission and reception. The fourth chapter introduces the broadband high power amplifier which using GaN HEMT with balun push-pull amplifier circuit structure. And we expect the amplifier can achieve Psat = 50dBm saturated output power and Gp = 17dB saturation gain in the bandwidth of 20-520MHz .The fifth chapter is for the conclusion and future research.
[1] 3GPP TS 36.101 V11.4.0 (2013-04) E-UTRA: User Equipment (UE) radio transmission and reception, 3GPP Std.
[2] India TELECOMMUNICATION ENGINEERING CENTRE (2014), Supplementary Downlink, available at :
[3] http://tec.gov.in/pdf/Studypaper/Supplementary%20Downlink.pdf
[4] 李大嵩、李明峻、李常慎、黃崇榮(2015),第四代行動通訊系統 3GPP LTE-Advanced:原理與實務
[5] 許超雲、周韻采、劉柏立。103年度「我國3G頻譜屆期釋出規劃及B4G/5G規範與發展研究-B4G/5G規範發展與應用推廣情形」研究報告。財團法人台灣經濟研究院(編號:1031229coco),臺北市:交通部。
[6] 3GPP TS 38.104 V15.4.0 (2018-12) TSG RAN: Base Station (BS) radio transmission and reception, 3GPP Std.
[7] Reference URL https://www.2cm.com.tw/2cm/zhtw/tech/F20D9109
E8FC4D34B9CC25B24A786283
[1] Reference URL http://ir.lib.ksu.edu.tw/bitstream/987654321/2179/1/
[2] Reference URL https://www.etsi.org/deliver/etsi_ts/138100_138199/138
104/15.03.00_60/ts_138104v150300p.pdf
[3] Hassan Sajjad, Sana Khan, Ahsan Altaf and Latif Jan, “A Compact Filter With Stepped Hairpin Defeected Ground Structure,” 2018 IEEE 21st International Multi-Topic Conference (INMIC), 1-2 Nov. 2018.
[4] B. Dana, “The design, fabrication and measurement of microstrip filters and coupler circuits,” High Frequency Electronics, pp. 22-30, 2002.
[5] P. Wade, “Recipes for printed hairpin filters”, W1GHz: www.W1G
Hz.com,2011.
[6] M. Naser-Moghadasi and M. Alamolhoda, “Suprious response suppression in hairpin filter using DMS integrated in filter structure,” Progress in Electromagnetics Research C, Vol. 18, 221-229, 2011.
[7] Wong, C. Y., and Lum, K. M. “Miniaturized Multilayered Bandpass Filter Using Microstrip Hairpin Resonator for C-band Application,” 602-605, 2012
[8] U. H. Gysel, “New theory and design for hairpin-line filters,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 523-531, 1974.
[9] J. Zhu and Z. Feng, “Microstrip interdigital hairpin resonator with an optimal physical length,” IEEE Microw. Compon. Lett., vol. 16, no. 12, pp. 672–674, Dec. 2006.
[1] R. Vetury, D. Hodge, D. Aichele, J. Shealy ” High Power & Wideband GaN RF Switch Technology” International Conference on Nitride Semiconductors
[2] T. Melly,A.-S. Porret, C. C.Enz and E. A. Vittoz, “An analysis of flicker noise rejection in low-power and low-voltage CMOS mixers,” IEEE J. Solid-State Circuits, vol. 36,pp. 102-109, Jan. 2001.
[3] I.D. Robertson, S. Lucyszyn,”RFIC and MMIC design and technology,” Institution of Electrical Engineers, 2001.
[4] Reference URL https://www.microwaves101.com/encyclopedias/stabili
ty-factor
[5] J. Rollett, ” Stability and Power-Gain Invariants of Linear Twoports, ” IRE Transactions on Circuit Theory, vol. 9, pp.29-32, Mar. 1962.
[6] Reference URL https://e2e.ti.com/blogs_/b/analogwire/archive/2016/08
/30/rf-sampling-linearity-performance-is-not-so-straightforward
[7] S. C. Cripps, “ RF Power Amplifier for Wireless Communications, ” Artech House,Inc., 1999.
[8] Reference URL http://ir.lib.kuas.edu.tw/retrieve/8098/932516S151
005X3.pdf
[9] S. Seo, D. Pavlidis, and J.-S. Moon, “A wideband balanced AlGaN/GaN HEMT MMIC low noise amplifier for transceiver front-ends,” in Eur. Gallium Arsenide Compound Semicond. Appl. (EGAAS) Symp. Dig. , pp. 225–228, 2005.
[10] S. C. Cripps, "Advanced techniques in RF power amplifier design," Norwood, MA: Artech House, 2002.
[11] G. Sun and R. H. Jansen, “Broadband Doherty power amplifier via real frequency technique,” IEEE Trans. Microwave Theory Tech., vol. MTT-60, pp. 99-111, Jan. 2012.
[12] R. Darraji, F. M. Ghannouchi, "Digital Doherty Amplifier With Enhanced Efficiency and Extended Range," IEEE Trans. Microw. Theory Tech., vol. 59, no. 11, pp. 2898– 2909, Nov. 2011.
[1] Reference URL https://www.itread01.com/content/1548526806.html
[2] Reference URL https://rf-design.co.za/wp-content/uploads/2016/02/Push-Pull-Circuits-and-Wideband-Transformers.pdf
[3] Reference URL https://zh.wikipedia.org/wiki/%E5%B1%85%E9%87%8
C%E7%82%B9
[4] Reference URL https://www.2cm.com.tw/2cm/zhtw/tech/F20D9109E8FC
4D34B9CC25B24A786283
[5] Reference URL https://www.wolfspeed.com/media/downloads/396/CGH
40090PP.pdf
[6] C. G. Gentzler and S.K. Leong, ” Broadband VHF/UHF Amplifier Design Using Coaxial Transformers”, From May 2003 High Frequency Electronics Copyright © 2003 Summit Technical Media, LLC.
[7] Sevick, J., “Transmission Line Transformers”, Noble Publishing Corp., 4th Edition 2001.
[8] Steve Cripps, RF Power Amplifiers for Wireless Communications,Artech House, 1999.
[9] Reference URL https://en.wikipedia.org/wiki/Ferranti_effect
[10] J. L. B. Walker, Ed., Classic Works in RF Engineering: Combiners, Couplers, Transformers and Magnetic Materials. Artech House Publishers, 2005.
[11] NXP semiconductor, “Three Balun Designs for Push-Pull Amplifiers,” AN1034 application note, July 1993.
[12] R. M. Smith, J. Lees, P. J. Tasker, J. Benedikt, and S. C. Cripps,“A 40W Push-Pull Power Amplifier for High Efficiency, Decade Bandwidth Applications at Microwave Frequencies, in Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, pp. 1 - 3, June 2012.
[13] Robert Martin Hooper Smith, BEng(2013), Broadband Microwave Push-Pull Power Amplifiers, University of Cardiff, Doctor of Philosophy.
[14] R. M. Smith and S. C. Cripps, “Design of High Efficiency, Multi-Octave Microwave Push-Pull Power Amplifiers” in Automated RF and Microwave Measurement Society Conference, April 2012
[15] R. M. Smith, J. Lees, P. J. Tasker, J. Benedikt, and S. C. Cripps, “A Novel Formulation for High Efficiency Modes in Push-Pull Power Amplifiers using Transmission Line Baluns,” to be published in IEEE Microwave and Wireless Components Letters, accepted 29th Feb 2012.
[16] S. Pisa, S. Chicarella, R. Cusani, and C. Jerome, “30-512 MHz Hybrid Power Amplifier Design Using GaN transistor,” to be published in International Journal of RF and Microwave Computer-Aided Engineering, 4th April 2018.