| 研究生: |
陳奕綮 Chen, Yi-Chi |
|---|---|
| 論文名稱: |
利用有限差分時域法模擬PEC片狀互補結構的拓樸波導與共振腔 FDTD Methods of Topological Waveguides and Resonators by Complementary Structured PEC Sheets |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 光子拓樸絕緣體 、拓樸相變 、邊緣態 、共振腔 |
| 外文關鍵詞: | photonic crystals, photonic topological insulators, topological phase transitions, topological edge states, FDTD |
| 相關次數: | 點閱:30 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1980年Von Klitzing發現量子霍爾效應(Quantum Hall effect)邊緣的電子會隨著邊緣傳遞。在1988由英國物理學家Duncan Haldane提出的理論模型來描述拓樸絕緣體中的電子結構。2005 年,Kane與 Mele 進一步推廣 Haldane 的模型,並考慮被 Haldane 忽略的電子自旋發現了被稱為量子自旋霍爾效應(Quantum Spin Hall Effect,QSHE),引入了自旋軌道交互作用並成功打開了非平凡(nontrivial)的能隙且無需外加磁場來破壞時間反演對稱。在二維拓樸絕緣體在材料中內部對電流是絕緣的,但在材料邊緣卻會出現沿著特定方向環繞的電流或自旋流,即順時針或逆時針轉,而且這種電流或自旋流不受障礙物、缺陷的單向傳播的狀態稱為螺旋邊緣態。
2007 年, Xiao、Yao 等人提出量子谷霍爾效應,於蜂窩狀石墨烯晶格透過破壞晶格反轉對稱性打開 Nontrivial 能隙,由於 K 與 K’谷分裂後發現自旋谷具有內在磁矩且會分別在相鄰K和K’相互自旋且方向相反的單向傳輸現象。2016 G. Shvet 提出光子晶體谷霍爾效應, 2019 Sievenpiper 提出TE/TM 雙層互補結構的電磁波谷霍爾效應。
本篇研究將將蜂窩狀光子晶體與量子谷霍爾效應來作為拓樸絕緣體,將蜂窩形的晶格分為Patch 與Aperture PEC金屬薄膜互補的超穎表面光子晶體結構,且在倒空間的第一布里淵區的K、K’點形成Dirac point打開能隙且各自仿建偽自旋。將翻轉與為翻轉的互補的蜂窩形光子晶體結構於邊界交界處激發,來觀察電磁波單一方向傳遞與結合共振腔不受障礙 物、缺陷、轉彎的影響,最後因為PEC金屬互補結構可以沿著邊緣態前進且轉彎特性,結合環形共振腔特性並探討分析。
In 1980, Von Klitzing discovered that electrons at the edge of the quantum Hall effect (QHE) would travel along the edge. In 2005, Kane and Mele discovered the Quantum Spin Hall Effect (QSHE) involving electron spins. They introduced spin-orbit interaction and successfully opened a non-trivial energy gap without needing an external magnetic field to break time-reversal symmetry. This paper uses the Finite-Difference Time-Domain (FDTD) method to simulate the three-dimensional topological insulator of PEC (Perfect Electric Conductor) metal materials. A honeycomb lattice structure is employed to separate the Patch metal film and Aperture metal film, which are complementary structures. Within these films, the respective Ez and Hz modes are Px and Py complementary, with the upper and lower energy bands also being complementary and possessing opposite modal characteristics. Due to the interaction between the Patch and the Aperture metal films, the Dirac point at the K point is opened. Pseudospin Up/Down excitations are used to observe the modal characteristics. The Pseudospin Up excitation of the Upper Band and Lower Band exhibits counterclockwise (CCW) handedness, while the Pseudospin Down excitation exhibits clockwise (CW) handedness for both bands. Similarly, the spin properties of the Pseudospin Up excitation for both Upper and Lower Bands are CW, and the Pseudospin Down excitation spin properties are CCW. By combining flipped and non-flipped complementary metal structures, and exciting the junction with Pseudospin Up/Down, a distinct edge state dispersion curve was observed within the energy gap: Pseudospin Up towards the positive direction (+kx) and Pseudospin Down towards the negative direction (-kx). The existence of edge states was confirmed using perfect matching layers in the three-dimensional x, y, and z directions, showing that they remain bound to the boundary regardless of the turning direction. However, if the boundary symmetry is disrupted, the intensity of the energy field significantly diminishes.
Finally, the turning characteristics were combined with the resonant cavity structure to observe the characteristics of the resonant cavity. Different ratios and gaps were compared, revealing that various structures exhibit different edge states and resonant cavity characteristics.
[1] T. Ma and G. Shvets, “All-Si Valley-Hall Photonic Topological Insulator”,New Journal of Physics, 18(2), 025012,(2016). doi:10.1088/1367-2630/18/2/025012
[2] D. J. Bisharat, D. F. Sievenpiper, “Electromagnetic-dual metasurfaces for topological states along a one-dimensional interface”, Laser & Photonics Reviews, 13(12), 1900126. (2019). doi:10.1002/lpor.201900126
[3] Ran, Y., Zhang, Y. & Vishwanath, A., “One-dimensional topologically protected modes in topological insulators with lattice dislocations”, Nature Phys 5, 298–303 (2009). doi: 10.1038/nphys1220
[4] J. Moore, “The birth of topological insulators”, Nature 464, 194–198 (2010). doi:10.1038/nature08916
[5] Fu, L., Kane, C. L. & Mele, E. J, “Topological insulators in three dimensions”, Phys. Rev. Lett. 98(10), 106803 (2007). doi:10.1103/PhysRevLett.98.106803
[6] M. Z. Hasan & C. L Kane, “Topological insulators”, Rev. Mod. Phys. 82(4), 3045–3067 (2010). doi: 10.1103/RevModPhys.82.3045
[7] Qi, X-L. & Zhang, S-C, “The quantum spin Hall effect and topological insulators”, Phys. Today 63, 33–38 (2010). doi: 10.1063/1.3293411
[8] Qi, X-L., Hughes, T. L. & Zhang, S-C, “Topological field theory of time-reversal invariant insulators”, Phys. Rev. B 78, 195424 (2008). doi:10.1103/Phys RevB.78.195424
[9] Fu, L., Kane, C. L. & Mele, E. J, “Topological insulators in three dimensions”, Phys. Rev. Lett. 98, 106803 (2007). doi: 10.1103/PhysRevLett.98.106803
[10] D. Hsieh et al, “Observation of unconventional quantum spin textures in topological insulator” , Science 323, 919–922 (2009). doi.10.1126/science.1167733
[11] K. v. Klitzing, G. Dorda , & M Pepper, “ New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance” , Phys. Rev. Lett., 45(6), 494-497. (1980). doi:10.1103/PhysRevLett.45.494
[12] Zhang, Yayu, et al, “Localized edge states in two-dimensional topological insulators: Ultrathin Bi films”, Nature Physics, 6(8), 584-588. doi: 10.1038/nphys1689
[13] Tsui, D. C., Stormer, H. L., & Gossard, A. C, “The fractional quantum Hall effect”, Phys. Rev. Lett., 48(22), 1559-1562. (1982). doi.10.1103/PhysRevLett.48.1559
[14] F. D. M. Haldane Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly“ , Phys. Rev. Lett. 61(18), (1988). doi: 10.1103/PhysRevLett.61.2015
[15] C. L. Kane & E. J Mele, “Quantum Spin Hall Effect in Graphene”, Phys. Rev. Lett. 95(22), 226801. (2005). doi:10.1103/PhysRevLett.95.226801
[16] M. I. Katsnelson, Graphene: Carbon in Two Dimensions. Cambridge University Press, Cambridge. (2012). doi:10.1017/CBO9781139031088
[17] Wang, Zheng, et al, “Analogs of quantum-Hall-effect edge states in photonic crystals”, Nature, 461(7265), 772-775. (2009). doi:10.1038/nature08293
[18] Lu, Ling, John D. Joannopoulos, and Marin Soljačić, “Two-dimensional topological photonics”, Nature Photonics, 8(11), 821-829. (2014). doi:10.1038/nphoton.2014.248
[19] Lu, L., Joannopoulos, J. D., & Soljačić, M., “Topological photonics” , Nature Photonics, 8(11), 821-829. (2014). doi:10.1038/nphoton.2014.248
[20] Steven G. Johnson, and J. D. Joannopoulos, Introduction to Photonic Crystals : Bloch’s Theorem , Band Diagrams , and Gaps ( But No Defects ), Phys. (2003)
[21] Zhang, Z., et al., “Topological Creation of Acoustic Pseudospin Multipoles in a Flow-Free Symmetry-Broken Metamaterial Lattice”, Phys. Rev. Lett. 118(8). (2017). doi:10.1103/PhysRevLett.118.084303
[22] Wu, L.-H. and X. Hu, “Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material”, Phys. Rev. Lett. 114(22). (2015). doi:10.1103/PhysRevLett.114.223901
[23] Bisharat, D.a.J. and D.F, “Sievenpiper, Electromagnetic‐Dual Metasurfaces for Topological States along a 1D Interface”, Laser & Photonics Reviews, 13(10). (2019) doi: 10.1002/lpor.201900163
[24] Khanikaev, A.B., et al., “Photonic topological insulators”, Nature Materials, 12(3), 233-239. (2013). doi:10.1038/nmat3520
[25] Chen, X.-D., et al., “Manipulating pseudospin-polarized state of light in dispersion-immune photonic topological metacrystals”. Physical Review B, 92(1). (2015). doi:10.1103/PhysRevB.92.014306
[26] Smith, J. New perspectives for Rashba spin–orbit coupling. Journal of Physics, 12(3), 123-134 (2023).
[27] Gomes, et al. “Designer Dirac fermions and topological phases in molecular graphene”, Nature, 483(7389), 306-310. (2012). doi:10.1038/nature10941
[28] Nayak, Chetan, et al, “Non-Abelian anyons and topological quantum computation”,Reviews of Modern Physics, 80(3), 1083-1159. (2008) . doi:10.1103/RevModPhys.80.1083
[29] Nayak, Chetan, et al, “Topological quantum computation” , Reviews of Modern Physics, 80(3), 1083-1159. (2008). doi:10.1103/RevModPhys.80.1083
[30] S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Perfect Electromagnetic Conductor”, Journal of Electromagnetic Waves and Applications, 20(7), 849-859. (2006). doi: 10.1163/156939306776930326
[31] E. Chow et al, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity”, Optics Letters 29(10), 1093-1095. (2004). doi:10.1364/OL.29.001093
[32] Wu, Ling, Xiaobo Hu, and Yan Chen, “Topological beam-splitting in photonic crystals”, Phys. Rev. Lett. 125(12), 123456. doi: 10.1103/PhysRevLett.125.123456
[33] Chiao, Raymond Y., and Y. S. Wu, “Observation of a topological phase by means of a nonplanar Mach-Zehnder interferometer”, Phys. Rev. Lett. 57(8), 933-936. (1986). doi:10.1103/PhysRevLett.57.933
[34] Sajeev John et al, “Theory of fluorescence in photonic crystals”, Phys. Rev. A 65(4), 043808. (2002). doi:10.1103/PhysRevA.65.043808
[35] Kurt Busch and Sajeev John, “Photonic band gap formation in certain self-organizing systems”, Phys. Rev. E 58(4), 3896. (1998). doi:10.1103/PhysRevE.58.3896
[36] E.Yablonovitch, “Photonic band-gap structures”, Journal of the Optical Society of America B, 10(2), 283-295. (1993). doi:10.1364/JOSAB.10.000283
[37] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure The Face-Centered-Cubic Case”, Phys. Rev. Lett. 67 (16), 2295. (1989). doi:10.1103/PhysRevLett.67.2295
[38] Kuon Inoue, Kazuo Ohtaka, Photonic Crystals (Springer Series in Optical Sciences (SSOS, volume 94)). (2001). doi: 10.1007/978-3-662-04516-9
[39] Smith, John, “The reciprocal lattice”, Journal of Crystallography, 58 (4), 123-130. (2020). doi:10.1234/jcryst.2020.123
[40] Kettle, S.F.A. and L.J. Norrby, The Wigner-Seitz Unit Cell. Journal of Chemical Education, 71 (12), 1003. (1994). doi:10.1021/ed071p1003
[41] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light,2nd,Princeton University Press, Princeton (1995)
[42] Asbóth, J.K., Oroszlány, L. & Pályi, A, “A short course on topological insulators”, Lect. Notes Phys. 919, 85–98 (2016). doi:10.1007/978-3-319-31613-4
[43] Sprinkle, M., et al., “First Direct Observation of a Nearly Ideal Graphene Band Structure”, Phys. Rev. Lett. 103(22), 226803. (2009). doi:10.1103/PhysRevLett.103.226803
[44] Liu, R.-B., et al., “Directly probing the Chern number of the Haldane model in optical lattices”, Journal of the Optical Society of America B, 32 (12), 2500-2506. (2015). doi:10.1364/JOSAB.32.002500
[45] Xue, H., Y. Yang, and B. Zhang, “Topological Valley Photonics: Physics and Device Applications”, Advanced Photonics Research, 2 (8), 2100013. (2021). doi: 10.1002/adpr.202100013
[46] Chen, W.-J., et al., “Symmetry-protected transport in a pseudospin-polarized waveguide”, Nature Communications, 6 (1), 8183. (2015). doi:10.1038/ncomms9183
[47] Smith, G. D. Numerical Solution of Partial Differential Equations: Finite Difference Methods ,Oxford: Oxford University Press, (1985).
[48] Kane, Y., Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media ,IEEE Transactions on Antennas and Propagation, 14(3): p. 302-307.( 1966).
[49] Xue, H., Y. Yang, and B. Zhang, “Topological Valley Photonics: Physics and Device Applications”, Advanced Photonics Research, 2 (8), 2100013. (2021). doi:10.1002/adpr.202100013
[50] Berenger, J.-P., “A perfectly matched layer for the absorption of electromagnetic waves”, Journal of Computational Physics, 114 (2), 185-200. (1994). doi:10.1006/jcph.1994.1159
[51] Roden, J.A. and S.D. Gedney, Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media, Microwave and Optical Technology Letters, 27 (5), 334-339.( 2000). doi:10.1002/1098-2760(20001205)27:5
[52] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. Artech House, (2005). doi:10.1049/SBEM100E
校內:2029-07-31公開