簡易檢索 / 詳目顯示

研究生: 廖振良
Liao, Zhen-Liang
論文名稱: 光調變與光訊號偵測在矽光領域之研究
Optical Modulation and Photodetection in Silicon Photonics
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 159
中文關鍵詞: 矽光子氮氧化矽矽鍺光檢測器矽光調變器陽極氧化熱光調變
外文關鍵詞: silicon optical modulator, thermo-optic, anodic oxidation, SiGe photodetector, silicon oxynitride, silicon photonics
相關次數: 點閱:126下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文之第一部份,首先探討利用電漿輔助式化學氣相沈積法(PECVD),藉由控制SiH4, NH3, N2O與N2等反應氣體之流量,於p型矽基板上沈積出一系列的氮氧化矽(SiON)薄膜。接著利用光學量測分析,探討出其薄膜於不同成長參數下,有效折射率及紅外線吸收頻譜對於反應氣體流量間的關係。此不同氮/氧比例之SiON薄膜,有效折射率的分佈範圍可從1.47至1.94。此外,在傅立葉轉換紅外光譜儀(FTIR)分析下,發現經由1000度C以上在氮氣環境中高溫回火,可有效降低SiON之氮-氫(N-H)鍵結對於紅外線波段的吸收。由SiON具有一大範圍之有效折射率變換及低損耗傳輸特性,是故可用其作為積體光學波導元件之基材。接著,以波束傳播法(BPM)數值模擬,在多模干涉波導(MMI)之元件架構下,成功地設計並製造出操作於632.8nm與1550nm信號波段之1x8及1x16光分波器。此外,藉由熱光效應與SiON具正值之熱光係數的特性下,利用BPM數值模擬,探討了改變部份多模波導區之有效折射率對光輸出的影響,並以此原理成功地製造出具22-dB衰減之1x3多模干涉波導衰減器,及具13-dB衰減的2x2串接式多模干涉波導光開關。

    在論文的第二部份,利用場效電晶體的結構,基於載子注入之電漿色散效應,成功設計出脊狀波導式之矽光調變器。在定義此元件n型源極(Source)、汲極(Drain)與p型閘極(Gate)的半導體製程中,採用了簡易有效的旋佈式摻雜(SOD)技術,藉由展阻量測(SRP)發現在經由1000度C的氮氧氛圍下摻雜,其p型與n型之摻雜濃度及深度可平均達到2-4x10的20次方cm-3及1um左右,且SOD摻雜濃度及擴散深度與時間和溫度有著密切的關係。本脊狀波導矽光調變器,藉由設計出不同的調變區長寬進行量測,發現在寬波導與長調變區的結構下,具有較高的光訊號調變效率。此外,本波導調變器在施加小於5伏特的汲-源極電壓(VDS)操作下,不論有無額外施加閘極電流,均可達到~100 %的調變深度表現,且本元件的響應速度範圍可達350至550us

    由於矽光檢測元件亦為本文之另一研究重心,因此在論文的最後,詳細地探討了利用陽極氧化的方式,在室溫環境下於矽(SiGe)薄膜表面形成鈍化披覆層,以改善並降低金半金(MSM)矽鍺光檢測器之暗電流。藉由適當地控制陽極氧化之電流密度與時間,經C-V量測發現可有效地降低矽鍺之介面態位密度。與未披覆氧化層之元件相比,在施加電流密度為0.1mA/cm2與30分鐘的陽極氧化製程條件下,元件的暗電流降低了7個數量級,此外在5伏偏壓下,光暗電流比最高可提升至2.7x10的7次方。

    In the first part of the dissertation, a collection of SiON films with different chemical compositions (various O/N ratios) were deposited on p-type silicon substrates using plasma-enhanced chemical vapor deposition (PECVD) method. These films were then optically characterized to delineate the impacts of relevant film growth parameters to the corresponding refractive indices and infrared absorption spectra. The Fourier transform infrared (FTIR) spectra were gathered in order to verify that a significant reduction in the infrared absorption of the N–H bond could in fact be achieved with the thermal annealing process. The refractive indices of SiON films with different O/N ratios spanned from 1.47 to 1.94 were realized by judiciously adjusting the pertinent PECVD gas flow rates. Next, the integrated 1x8 and 1x16 multimode interference (MMI) power beam splitters operating at 632.8 nm and 1.55nm were designed and fabricated based on the numerical simulation using beam propagation method (BPM). Furthermore, based on the positive thermo-optic (TO) coefficient of SiON, the TO effect was employed to change the self-imaging light pattern as generated by the side-heated MMI region for purposes of optical steering and attenuation. Finally, the integrated 1x3 SiO2/SiON/SiO2 MMI optical waveguide attenuator with 22-dB attenuation and 2x2 cascaded MMI optical switch with 13-dB attenuation were then designed and successfully fabricated.

    The second part of this dissertation reports the fabrication and experimental characterization of field-effect transistor-based silicon optical waveguide modulators. The entire modulation scheme is realized through the so-called carrier injection or plasma dispersion effect. The spin-on dopant (SOD) method was conducted at 1000C in a mixture of nitrogen/oxygen ambient to separately pattern the heavily doped source (n+), gate (p+), and drain (n+) regions. The corresponding p- and n-type dopant profiles were determined using the spreading resistance probe (SRP) technique, where the average dopant concentrations and diffusion depths of both the heavily doped p+ and n+ regions were in the neighborhood of 2 − 4x10E20 cm-3 and ~ 1um, respectively. The resultant dopant concentrations and diffusion depths were found to be critically dependent on the diffusion time and temperature. An enhancement in the modulation efficiency of modulators was realized when the corresponding rib waveguide width and modulation length became respectively wider and longer. Furthermore, the modulators thus fabricated showed ultra-sensitivity in drain-source voltage (VDS), where a static modulation depth of nearly 100 % at VDS of less than 5 V was achieved with and without the biasing gate current applied. Finally, the rise and fall times extracted from the dynamical transmitted intensity measurement were in a range spanning from 350 to 550 us.

    In the last part of this dissertation, a detailed procedure of using the anodic oxidation method to passivate the SiGe film surface for the purpose of enhancing the functionality of SiGe/Si heterojunction infrared metal-semiconductor-metal (MSM) photodetectors was reported. Specifically, in order to reduce the magnitude of the dark current while simultaneously boosting the photocurrent to dark current contrast ratio, a proper adjustment of anodic oxidation time and current density is necessary. According to the C-V analysis, the interface state density can be reduced via the anodic oxidation method. Compared to uncapped samples, a reduction of approximately 7 orders of magnitude in dark current was achieved by using the anodic-oxide passivation at an applied current density of 0.1 mA/cm2 for 30 minutes. Furthermore, the photo to dark current contrast ratio of the oxide-passivated samples was enhanced by a magnitude of 2.7x10E7 under 5 V bias voltage.

    摘要......................................................I Abstract................................................III Acknowledgement..........................................VI Contents...............................................VIII Table Captions...........................................XI Figure Caption.........................................XIII CHAPTER 1 Introduction...................................1 1.1 Introduction..........................................2 1.1.1 Silicon oxynitride-based planar lightwave circuits..................................................4 1.1.2 Silicon-based modulators............................6 1.1.3 SiGe photodetectors.................................9 1.2 Overview of This dissertation........................10 CHAPTER 2 Multimode Interference-Based Optical Beam Splitters in Silicon Oxynitride (SiON) Waveguides...............................................20 2.1 Introduction.........................................21 2.2 Growth of SiON Films by PECVD........................23 2.3 Fourier Transform Infrared (FTIR) Study of SiON Films....................................................25 2.4 Symmetric Mode Mixing in Multimode Interference Waveguides...............................................26 2.5 Device Design and Experimental Details...............29 2.5.1 MMI devices operating at a wavelength of 632.8 nm.......................................................29 2.5.2 MMI devices operating at a wavelength of 1550 nm.......................................................30 2.5.3 Fabrication processes..............................31 2.6 Characterizations of 1 x N MMI Optical Beam Splitters................................................32 2.6.1 MMI devices operating at a wavelength of 632.8 nm.......................................................32 2.6.2 MMI devices operating at a wavelength of 1550 nm...33 2.7 Summary..............................................33 CHAPTER 3 Compact 1 x 3 SiON Tunable Optical Waveguide Attenuator Based on the Multimode Interference Effect....53 3.1 Introduction.........................................54 3.2 Design and Numerical Simulation......................56 3.3 Device Fabrication...................................59 3.4 Characterizations of 1 x 3 SiON MMI Waveguide Attenuator...............................................61 3.5 Summary..............................................63 CHAPTER 4 2 x 2 Thermo-Optic SiON Optical Switch Employing the Cascaded Multimode Interference Waveguides...............................................77 4.1 Introduction.........................................78 4.2 Cascaded Multimode Interference Waveguides Structure................................................79 4.3 Device Design and Fabrication........................81 4.4 Characterizations of Optical Power Steering..........84 4.5 Summary..............................................87 CHAPTER 5 Silicon Integrated Waveguide Modulator Utilizing the Three-Terminal Transistor Structure...............................................100 5.2 Free Carrier Plasma Dispersion Effect...............103 5.3 Fabrication Procedures of Transistor Waveguide Modulators..............................................105 5.4 Emission Microscopy (EMMI) Technique Analysis................................................107 5.5 Modulation Measurements.............................108 5.6 Summary.............................................113 CHAPTER 6 Functional Enhancement of MSM Photodetectors on Heteroepitaxial SiGe-on-Si Using Anodic Oxidation Method..................................................129 6.1 Introduction........................................130 6.2 Analysis of SiGe-on-Si MSM Photodetector............131 6.3 Anodic Oxidation/Passivation Method.................133 6.4 Improvement of SiGe MSM Photodetectors by Using Anodic Oxidation ...............................................135 6.5 Summary.............................................137 CHAPTER 7 Conclusions and Future Prospects.............149 7.1 Conclusions.........................................150 7.2 Future Prospects....................................153 Publication list........................................156 Vita....................................................159

    Chapter 1
    [1] G. T. Reed, “The optical age of silicon”, Nature, vol. 427, pp. 595-596, 2004.
    [2] International Technology Roadmap for Semiconductors (ITRS), Interconnect topic, 2006.
    [3] D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum Electron., vol. 6, pp. 1312-1317, 2000.
    [4] C. M. M. Denisse, K. Z. Troost, J. B. O. Elferink, and F. H. P. M. Habraken, “Plasma-enhanced growth and composition of silicon oxynitride films,” J. Appl. Phys., vol. 60, pp. 2536-2542, 1986.
    [5] K. E. Mattsson, “Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films,” J. Appl. Phys., vol. 77, pp. 6616-6623, 1995.
    [6] K. Worhoff, A. Driessen, P. V. Lambeck, L. T. H. Hilderink, P. W. C. Linders, and Th. J. A. Popma, “Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics,” Sens. Actuators A, vol. 74, pp. 9-12, 1999.
    [7] H. Wong, “Recent developments in silicon optoelectronic devices,” Microelectron. Reliab., vol. 42, pp. 317-326, 2002.
    [8] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, pp. 1687-1706, 1993.
    [9] A. Melloni, R. Costa, P. Monguzzi, M. Martinelli, “Ring-resonator filters in silicon oxynitride technology for dense wavelength-division multiplexing systems,” Optics Lett., vol. 28, pp. 1567-1569, 2003.
    [10] G. –L. Bona, R. Germann, B. J. Offerin, “SiON high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev., vol. 47, pp. 239-249, 2003.
    [11] H. Wong, M. C. Poon, Y. Gao, T. C. W. Kok, “Preparation of thin dielectric film for non-volatile memory by thermal oxidation of Si-rich LPCVD nitride,” J. Electrochem. Soc., vol. 148, pp. G275-278, 2001.
    [12] M. C. Poon, C. W. Kok, H. Wong and P. J. Chan, “Bonding structures of silicon oxynitride prepared by oxidation of Si-rich silicon nitride,” Thin Solid Films, vol. 462-463, pp. 42-45, 2004.
    [13] F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Optical Matter., vol. 26, pp. 33-46, 2004.
    [14] B. J. Offrein, R. Germann, F. Horst, H. W. M. Salemink, R. Beyeler, and G. L. Bona, “Resonant coupler-based tunable add-after-drop filter in silicon–oxynitride technology for WDM networks,” IEEE J. Sel. Top. Quantum Electron., vol. 5, pp. 1400-1406, 1999.
    [15] B. J. Offrein, F. Horst, G. L. Bona, R. Germann, H. W. M. Salemink, and R. Beyeler, “Adaptive gain equalizer in high-index-contrast SiON technology,” IEEE Photon. Technol. Lett., vol. 12, pp. 504-506, 2000.
    [16] H. Wong, “Recent developments in silicon optoelectronic devices,” Microelectron. Reliab., vol. 42, pp. 317-326, 2002.
    [17] C. David, D. Wiesmann, R. Germann, F. Horst, B. J. Offerin, R. Beyeler, H. W. M. Salemink, G. L. Bona, “Apodised Bragg gratings in planar waveguides for add-drop filters,” Microelectron. Eng., vol. 57-58, pp. 713-719, 2001.
    [18] B. Schauwecker, M. Arnold, G. Przyrembel, B. Kuhlow, C. Radehaus, “Optical waveguide components with high refractive index difference in silicon-oxynitride for application in integrated optoelectronics,” Opt. Eng., vol. 41, pp. 237-243, 2002.
    [19] O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Amer., vol. 63, pp. 416-419, 1973.
    [20] L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol., vol. 10, pp. 1843-1845, 1992.
    [21] P. A.Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol., vol. 12, pp. 1004-1009, 1994
    [22] Q. Lai, M. Bachmann and H. Melchior, “Low-loss 1  N multimode interference couplers with homogeneous output power distributions realised in silica on Si material,” Elect. Lett., vol. 33, pp. 1699-1700, 1997.
    [23] T. A. Saida, M. O. Himeno, A. Sugita and K. Okamoto, “Silica-based 2 x 2 multimode interference coupler with arbitrary power splitting ratio,” Elect. Lett., vol. 35, pp. 2031-2033, 1999.
    [24] R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Elect., vol. QE-23, pp. 123-129, 1987.
    [25] R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” in Proc. SPIE: Integrated Optical Circuit Engineering IV, 16-17 Sept. 1986. 1987. Cambridge, MA, USA.
    [26] H. C. Huang, T. C. Lo, “Simulation and analysis of silicon electro-optic modulators utilizing the carrier-dispersion effect and impact-ionization mechanism,” J. Appl. Phys., vol. 74, pp. 1521-1528, 1993.
    [27] Y. L. Liu, E. K. Liu, S. L. Zhang, G. Z. Li, and J. S. Luo, “Silicon 1 x 2 digital optical switch using plasma dispersion,” Electron. Lett., vol. 30, pp. 130-131, 1994.
    [28] A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, fabrication, and testing of an integrated si-based light modulator,” J. Lightwave Technol., vol. 21, pp. 228-235, 2003.
    [29] C. K. Song, S. H. Lee, K. D. Kim, J. H. Park, B. W. Koo, D. H. Kim, C. H. Hong, Y. Y. Kim, and S. B. Hwang, “Optical characteristics of InGaP/GaAs HPTs,” IEEE Electron Device Lett., vol. 22, pp. 315-317, 2001.
    [30] A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron., vol. 37, pp. 1412-1419, 2001.
    [31] A. Vonsovici, L. Vescan, R. Apetz, A. Koster, and K. Schmidt, “Room temperature photocurrent spectroscopy of SiGe/Si p-i-n photodiodes grown by selective epitaxy,” IEEE Trans. Electron. Dev., vol. 45, pp. 538-542, 1998.
    [32] J. J. Ho, Y. K. Fang, K. H. Wu, and C. S. Tsai, “High-speed amorphous silicon germanium infrared sensors prepared on crystalline silicon substrates,” Appl. Phys. Lett., vol. 70, pp. 826-828, 1997.
    [33] C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo, and B. C. Hsu, “A novel photodetector using MOS tunneling structures,” IEEE Electron Devices Lett., vol. 21, pp. 307-309, 2000.
    [34] H. Temkin, A. Atreasyan, N. A. Olsson, T. P. Pearsall, and J. C. Bean, “Ge0.6Si0.4 rib waveguide avalanche photodetectors for 1.3 m operation,” Appl. Phys. Lett., vol. 49, pp. 809-811, 1986.
    [35] M. Salib, L. Liao, R. Jones, M. Morse, A. Liu, D. S-Rubio, D. Alduino, M. Paniccia, Corporate Technology Group, Intel Corporation, “Silicon photonics,” Intel Technology Journal., vol. 08, 2004.
    [36] S. J. Koester, B. U. Klepser, J. O. Chu, D. Kuchta, K. Ismail, “1.1 GHz MSM photodiodes on relaxed Si1-xGex grown by UHV-CVD,” Device Research Conference, pp. 60-61, 1998.

    Chapter 2
    [1] M. Hoffmann, P. Kopka, and E. Voges, “Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems,” IEEE Photon. Technol. Lett., vol. 9, pp. 1238-1240, 1997.
    [2] R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication, and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B, vol. 61, pp. 100-127, 1999.
    [3] R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications”, J. Electrochem. Soc., vol. 147, pp. 2237-2241, 2000.
    [4] K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride - a versatile material for integrated optical applications,” J. Electrochem. Soc., vol.149, pp. F85-F91, 2002.
    [5] A. Zhang and K. T. Chan, “Characterization of the optical loss of an integrated silicon oxynitride optical switch structure” Appl. Phys, Lett., vol. 83, pp. 2524-2526, 2003.
    [6] R. M. de Ridder, K. Wörhoff, A. Driessen, P. V. Lambeck, and H. Albers, “Silicon oxynitride planar waveguiding structures for application in opti- cal communication” IEEE J. Sel. Top. Quantum Electron., vol. 4, pp. 930-937, 1998.
    [7] O. Cohen, R. Jones, O. Raday, A. Fang, N. Izhaky, D. Rubin, and M. Paniccia, “SOI-based monolithic integration of SiON and Si planar optical circuits” Proc. SPIE, vol. 6183, p. 618313, 2006.
    [8] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol., vol. 13, pp. 615-627, 1995.
    [9] D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, and S. Forrest, “Fabrication of ultracompact 3-dB 2 x 2 MMI power splitters,” IEEE Photon. Technol. Lett., vol. 11, pp. 1009-1011, 1999.
    [10] Olof Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Am., vol. 63, PP. 416-419, 1973.
    [11] R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett., vol. 27, pp. 337-339, 1975.
    [12] A. C. Adams, “Plasma deposition of inorganic films,” Solid State Technol., vol. 24, pp.135-139, 1983.
    [13] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in NN multimode interference couplers including phase relations,” Appl. Opt., vol. 33, pp. 3905-3911, 1994.
    [14] Zhe Jin and Gangding Peng, “New criterion for designing silica multimode interference power splitters,” Fiber and Integrated Optics, vol. 24, pp.501-509, 2005.

    Chapter 3
    [1] R. Germann, H. W. M. Salemink, R. Beyeler, G. L. Bona, F. Horst, I. Massarek, and B. J. Offrein, “Silicon oxynitride layers for optical waveguide applications”, J. Electrochem. Soc., vol. 147, pp. 2237-2241, 2000.
    [2] K. Wörhoff, L. T. H. Hilderink, A. Driessen, and P. V. Lambeck, “Silicon oxynitride - a versatile material for integrated optical applications,” J. Electrochem. Soc., vol.149, pp. F85-F91, 2002.
    [3] A. Zhang and K. T. Chan, “Characterization of the optical loss of an integrated silicon oxynitride optical switch structure,” Appl. Phys. Lett., vol.83, pp. 2524-2526, 2003.
    [4] M. Hoffmann, P. Kopka, and E. Voges, “Low-loss fiber-matched low-temperature PECVD waveguides with small-core dimensions for optical communication systems,” IEEE Photonics Technol. Lett.,vol. 9, pp. 1238-1240, 1997.
    [5] D. Li, Y. Zhang, L. Liu, and L. Xu, “Low consumption power variable optical attenuator with sol-gel derived organic inorganic hybrid materials,” Opt. Express, vol. 14, pp. 6029-6034, 2006.
    [6] Y. O. Noh, M. –S. Yang, Y. H. Won, and W. –Y. Hwang, “PLC-type variable optical attenuator operated at low electrical power,” Electron. Lett., vol. 36, pp. 2032-2033, 2000.
    [7] S. M. Garner and S. Caracci, “Variable optical attenuator for larger-scale integration,” IEEE Photonics Technol. Lett., vol. 14, pp. 1560-1562, 2002.
    [8] X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, “Compact variable optical attenuator based on multimode interference coupler,” IEEE Photonics Technol. Lett., vol. 17, pp. 2361-2363, 2005.
    [9] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol., vol. 13, pp. 615-627, 1995.
    [10] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N  N multimode interference couplers including phase relations,” Appl. Opt., vol. 33, pp. 3905-3911, 1994.
    [11] D. A. May-Arrioja, N. Bickel, and P. LiKamWa, “Optical beam steering using InGaAsP multiple quantum wells,” IEEE Photonics Technol. Lett., vol. 17, pp. 333-335, 2005.
    [12] Ricky W. Chuang, Z. L. Liao, and C. K. Chang, “Integrated optical beam splitters employing symmetric mode mixing in SiO2/SiON/SiO2 multimode interference waveguides,” Jpn. J. Appl. Phys., vol. 46, pp. 2440-2444, 2007.
    [13] L. Lierstuen and A. Subdo, “8-channel wavelength division multiplexer based on multimode interference couplers,” IEEE Photonics Technol. Lett., vol. 7, pp. 1034-1036, 1995.
    [14] L. Leick, J. H. Povlsen, and R. J. S. Pedersen, “Numerical and experimental investigation of 2  2 multimode interference couplers in silica-on-silicon,” Opt. Quantum Electron., vol. 33, pp. 387-398, 2001.
    [15] Y. Tang, W. Wang, Y. Wu, J. Yang, and Y. Wang, “Multimode interference coupler with strong confinement structure on silicon on-insulator,” Opt. Eng., vol. 43, pp. 2495-2496, 2004.
    [16] N. Agrawal, C. Weinert, H. Ehrke, G. Mekonnen, D. Franke, C. Bornholdt, and R. Langehorst, “Fast 2  2 Mach-Zehnder optical space switches using InGaAsP-InP multiquantum-well structures,” IEEE Photon. Technol. Lett., vol. 7, pp. 644-645, 1995.
    [17] M. Earnshaw, J. Soole, M. Cappuzzo, L. Gomez, E. Laskowsi, and A. Paunescu, “Compact, low-loss 4  4 optical switch matrix using multimode interferometers,” Electron. Lett., vol. 37, pp. 115-117, 2001.
    [18] Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2  2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett., vol. 10, pp. 681-683, 1998.
    [19] J. Xia, J. Yu, Z. Wang, Z. Fan, and S. Chen, “Low power 2  2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Optics Commun., vol. 232, pp. 223-228, 2004.
    [20] F. Wang, J. Yang, L. Chen, X. Jiang, and M. Wang, “Optical switch based on multimode interference coupler,” IEEE Photonics Technol. Lett., vol. 18, pp. 421-423, 2006.
    [21] C. Y. Wu, P. Lin, R. S. Huang, W. C. Chao, and Mark M. H. Lee, “Design optimization for micromachined low power Mach-Zehnder thermo-optic switch,” Appl. Phys. Lett., vol.89, p. 121121, 2006.
    [22] Abdulaziz M. Al-Hetar, Abu Sahmah M. Supa’at, A. B. Mohammad, and I. Yulianti, “Crosstalk improvement of a thermo-optic polymer waveguide MZI-MMI switch,” Optics Commun., vol. 281, pp. 5764-5767, 2008.

    Chapter 4
    [1] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol., vol. 13, pp. 615-627, 1995.
    [2] P. A. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2 x 2 and 1 x 3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol., vol. 14, pp. 2286-2293, 1996.
    [3] J. Leuthold, J. Eckner, E. Gamper, P. A. Besse, and H. Melchior, “Multimode interference couplers for the conversion and combining of zero- and first-order modes,” J. Lightwave Technol., vol. 16, pp. 1228-1239, 1998.
    [4] J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol., vol. 19, pp. 700-707, 2001.
    [5] R. W. Chuang, Z.-L. Liao, and C.-K. Chang, “Integrated optical beam splitters employing symmetric mode mixing in SiO2/SiON/SiO2 multimode interference waveguides,” Jpn. J. Appl. Phys., vol. 46, pp. 2440-2444, 2007.
    [6] Q. Lai, W. Hunziker, and H. Melchior, “Low-power compact 2  2 thermooptic silica-on-silicon waveguide switch with fast response,” IEEE Photon. Technol. Lett., vol. 10, pp. 681-683, 1998.
    [7] R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett., vol. 15, pp. 1366-1368, 2003.
    [8] Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett., vol. 38, pp. 1701-1702, 2002.
    [9] R. van Roijen, E. C. M. Pennings, M. J. N. Van Stalen, T. van Dongen, B. H. Verbeek, and J. M. M. van der Heijden, “Compact InP-based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett., vol. 64(14), pp. 1753-1755, 1994.
    [10] M. L. Mašanović, E. J. Skogen, J. S. Barton, J. M. Sullivan, D. J. Blumenthal, and L. A. Coldren, “Multimode interference-based two-stage 1  2 light splitter fro compact photonic integrated circuits,” IEEE Photon. Technol. Lett., vol. 15, pp. 706-708, 2003.
    [11] M. B. J. Diemeer, “Polymeric thermo-optic switches for optical communications,” Opt. Mater., vol. 9, pp. 192-200, 1998.
    [12] J. Xia, J. Yu, Z. Wang, Z. Fang, and S. Chen, “Low power 2  2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching,” Optics Commun., vol. 232, pp. 223-228, 2004.

    Chapter 5
    [1] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, pp. 1971-1974, 1991.
    [2] A. Splett, T. Zinke, K. Petermann, E. Kasper, H. Kibbel, H. J. Herzog, and H. Presting, “Integration of waveguides and photodetectors in SiGe for 1.3 m operation,” IEEE Photonics Technol. Lett., vol. 6, pp. 59-61, 1994.
    [3] M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, “Efficient silicon light-emitting diodes,” Nature, vol. 412, pp. 805-808, 2001.
    [4] C. K. Tang, G. T. Reed, “Highly efficient optical phase modulator in SOI waveguides,” Electron. Lett., vol. 31, pp. 451-452, 1995.
    [5] R. W. Chuang, Mao-Teng Hsu, “Silicon optical modulators in silicon-on-insulator substrate based on the p-i-n waveguide structure,” Jpn. J. Appl. Phys., vol. 46, pp. 2445-2449, 2007.
    [6] R. D. Lareau, L. Friedman, and R. A. Soref, “waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor ,” Electron. Lett., vol. 26, pp.1653-1655, 1990.
    [7] A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, G. Coppola, “Design, fabrication, and testing of an integrated Si-based light modulator,” J. Lightwave Technol., vol. 21, pp.228-235, 2003.
    [8] A. Sciuto, S. Libertino, S. Coffa, G. Coppola, “Miniaturizable Si-based electro-optical modulator working at 1.5 m,” Appl. Phys. Lett., vol. 86, p. 201115, 2005.
    [9] Ricky W. Chuang, Zhen-Liang Liao, Mao-Teng Hsu, Jia-Ching Liao, Chih-Chieh Cheng, “Silicon electro-optic modulator fabricated on silicon substrate utilizing the three-terminal transistor waveguide structure,” Jpn. J. Appl. Phys., vol.47, pp. 2945-2949, 2008.
    [10] S. Pogossian, L. Vescan, A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol., vol. 16, pp.1851-1853, 1998.
    [11] T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics. London, U.K. :Butterwoth, 1973.
    [12] G. T. Reed, A. P. Knights, Silicon Photonics: an introduction, John Wiley, Chichester, 2004.
    [13] L. Pavesi, D. J. Lockwood, eds., Silicon Photonics, Springer-Verlag, Berlin, 2004.
    [14] R. A. Soref, P. J. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 m,” IEEE J. Quantum Electron., vol. QE-22, pp.873-879, 1986.
    [15] R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, pp. 123-129, 1987.

    Chapter 6
    [1] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, pp. 1687-1706, 1993.
    [2] M. Bauer, C. Schöllhorn, K. Lyutovich, E. Kasper, M. Jutzi, and M. Berroth, “High Ge content photodetectors on thin SiGe buffers,” Mater. Sci. Eng. B, vol.89, pp. 77-83, 2002.
    [3] C. Li, C. J. Huang, B. Cheng, Y. Zuo, L. Luo, J. Yu, and Q. Wang, “SiGe/Si resonant-cavity-enhanced photodetectors for 1.3 m operation fabricated using wafer bonding techniques,” J. Appl. Phys., vol. 92, pp. 1718-1720, 2002.
    [4] F. K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson, “Oxidation studies of SiGe,” J. Appl. Phys., vol. 65, pp. 1724-1728, 1989.
    [5] J. Rappich and W. Füssel, “Anodic passivation of SiGe,” Microelectron. Relab., vol. 40, pp.825-827, 2000.
    [6] C. Caragianis, Y. Shigesato, and D. C. Paine, “Low temperature passivation of Si1-xGex alloys by dry high pressure oxidation,” J. Electron. Mater., vol. 23, pp.883-888, 1994.
    [7] M. Seck, R. Devine, C. Hernandez, Y. Campidelli, and J. –C. Dupuy, “Study of Ge bonding and distribution in plasma oxides of Si1-xGex alloys,” Appl. Phys. Lett., vol. 72, pp.2748-2750, 1998.
    [8] O. Vancuawenberghe, O. C. Hellman, N. Herbot, and W. J. Tan, “New SiGe dielectrics grown at room temperature by low-energy ion beam oxidation and nitridation,” Appl. Phys. Lett., vol. 59, pp.2031-2033, 1991.
    [9] E. H. Nicollian and A. Goetzberger, “The Si-SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique,” Bell Syst. Tech. J., vol. 46, pp.1055-1133, 1967.
    [10] J. Rappich, “Smoothing, passivation and re-passivation of silicon surfaces by anodic oxidation: a low thermal budget process,” Microelectron. Reliab., vol. 40, pp.815-819, 2000.
    [11] G. Mande, S. A. Campbell, and H. J. Lewerenz, Semiconductor Micromaching-Techniques and Industrial Application, Wiley, New York, vol. 2, p. 263.
    [12] Rappich J, Sieber I, Schöpke A, Füssel W, Glück M, and Hersener J., “Influence of a Silicon Cap on SiGe Passivation by Anodic Oxidation,” Mat. Res. Soc. Symp. Proc., vol. 451, pp. 251-220, 1997.
    [13] J. D. Hwang, C. Y. Kung, Y. H. Chen, C. S. Wei, and P. S. Chen, “Liquid phase deposition silicon dioxide for surface passivation in SiGe metal-semiconductor-metal photodetectors,” Thin Solid Films, vol. 515, pp. 4049-4052, 2007.
    [14] J. D. Hwang, W. T. Chang, Y. H. Chen, C. Y. Kung, C. H. Hu, and P. S. Chen, “Suppressing the dark current of metal-semiconductor-metal SiGe/Si heterojunction photodetector by using asymmetric structure,” Thin Solid Films, vol. 515, pp. 3837-3839, 2007.
    [15] J. D. Hwang, Y. H. Chen, C. Y. Kung, and J. C. Liu, “Effects of hydrogenated-amorphous-silicon layer on the performance of SiGe metal-semiconductor-metal photodetectors,” J. Electrochem. Soc., vol. 154, pp. J365-J368, 2007.

    下載圖示 校內:2010-11-16公開
    校外:2012-11-16公開
    QR CODE