| 研究生: |
張永昕 Chang, Yung-Hsin |
|---|---|
| 論文名稱: |
大型管道檢測之新型水下載具初步設計 Preliminary Design of a New Underwater Vehicle for Large Pipe Inspection |
| 指導教授: |
黃才烱
Huang, Tsai-Jeon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 水下管道機器人 、剪刀機構 、運動分析 、機械設計 、管道檢測 |
| 外文關鍵詞: | In-pipe underwater robot, Scissor mechanism, Kinematic analysis, Mechanical design, Pipeline inspection |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自人類社會發展以來,管道運輸一直被廣泛地運用,但管道內部可能有阻塞或損壞及洩漏的情形但在進行人工管路檢修時發生意外卻層出不窮。所以尋求代替人工進入管道之方案有其必要性。
本研究設計一款用於大型管道的管道檢修水下載具原型,用以替代人工進入大型管道,整理各種類管道機器人的結構、運作原理及特性,與遙控式潛水艇用於管道內的情形。依照使用需求,並結合輪式管道機器人與遙控潛水艇的特性,開發一款用於檢測2.5m~4m直徑圓管的水下載具,此水下在具以三組機構與管壁接觸,三組機構為連動,並以一螺桿及滑塊控制,使載具可在管中置中行經;以一組螺旋槳搭配無刷馬達做為此水下載具驅動的動力。並提出如定位方式、攝影、照明等用於此水下載具的配套方案。
為了分析水下載具原型的可行性與安全行,首先研究透過運動學分析,確定機構的運動情形符合使用需求;再者考量可能的外力來源,包含在展開、收合、靜置管中、對抗水流等情況下分析展開機構的受力安全狀態,以合理的安全係數來表達機構的安全性;另外研究分析展開機構及推動水下載具的動力,並選出合適的動力來源;最後研究製作一縮小模型進行展開測試。透過以上分析確保此原型在上述狀況不會損壞,並可正常運作。
研究為完成一進行運動學及安全性分析的管道水下載具設計原型,可適用於大型管道,並透過展開機構沿管軸線行駛;展開機構的運動情形符合使用需求,並具備足夠動力使機構能正確運動;螺旋槳及馬達可提供水下載具至多1m/s的前進速度;同時水下載具擁有不須訊號傳輸的定位及勘察配套措施。
The objective of this study is to design a prototype underwater vehicle which is capable of replacing human to perform inspection in large pipeline. The large pipeline is ranging from 2.5m to 4m diameter. First, the related researches such as pipeline robotics and remotly controlled submarine are reviewed. Accordingly, the design intergraded with wheeled robot and submarine is proposed. This design consists of three major components: main body, extending structure, and supporting system. The main body is similar to submarine design and powered by propellers. The extending structure is operated under three sets of modified scissor mechanisms. The wheel of structure will deploy to the wall of pipe and make the vehicle travel along the center of pipe. The supporting system including positioning imaging, lighting, and other aspects is also considered.
In order to validate the feasibility and safety of the newly design underwater vehicle.
Several engineering analyses are conducted in this study. The kinematic analysis proves that the extending structure is capable of deploying to the designated pipeline diameter. The structure analysis under all possible circumstances such as deployment, retraction, static positioning inside pipe, and resistance against flow, ensure that the design is able to withstand without damage. The power to deploy the extending structure and drive the vehicle is also analyzed to make sure the feasibility of the selected motors. In addition, a scaled-down extending mechanism is made by 3-D printer to realize the deploying trajectory and verify the design.
In conclusion, a new underwater vehicle for large pipe inspection is developed preliminarily in this study. Some fundamental validations are conducted to ensure the feasibility of design. However, this study only performs the design process and makes a scaled down extending structure. To achieve the final goal, the physical realization of this underwater vehicle should be considered in the future.
[1] 自由時報電子報,https://news.ltn.com.tw/news/society/breakingnews/3900045
[2] DailyDispatch,https://www.dailydispatch.com/StateNews/FL/2023/January/27/Worker.dies.after.getting.trapped.within.pipe.in.canal.in.MiamiDade.County.aspx
[3] Roslin, N. S., Anuar, A., Jalal, M. F., and Sahari, K. S. , “A Review: Hybrid Locomotion of In-Pipe Inspection Robot. Procedia Engineering”, 2012, Vol.41, 1456–1462.
[4] Shao, L., Wang, Y., Guo, B., and Chen, X., “ A Review over State of the Art of In-Pipe Robot. International Conference on Mechatronics and Automation”, August2-5, 2180–2185, 2015.
[5] Muramatsu, M., Namiki, R., Koyama, N., and Suga, Y. , “Autono 15mous Mobile Robot in Pipe for Piping Operations. IEEE/RSJ International Conference on Intelligent Robots and Systems, Cat. No.00CH37113, pp.2166–2171, 2000.
[6] Horodinca,M., Doroftei,I., Mignon,E. and Preumont,A. “ A Simple Architecture For In-Pipe Inspection Robots”, Universite Libre De Bruxelles, Brussels , 2002
[7] Moghaddam, M. M., Arbabtafti, M. and Hadi, A.. In-Pipe Inspection Crawler Adaptable To The Pipe Interior Diameter. International Journal of Robotics and Automation, Vol.26(No.2), pp.135–145 , 2011
[8] Park,J., Kim,T.and Yang,H., “ Development of an actively adaptable in-pipe robot”, School of Mechanical Engineering,Yonsei University, Seoul, Korea, 2009
[9] Kim,J., Sharma,G.,and Iyengar,S.S. “FAMPER: A Fully Autonomous Mobile Robot for Pipeline Exploration”, Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana, USA, 2010
[10] Waleed, D., Mustafa, S. H., Mukhopadhyay, S., and Abdel-hafez, M. F., “ An In-Pipe Leak Detection Robot With A Neural-Network-Based Leak Verification System. ”IEEE Sensors Journal, Vol.19(No.3), pp.1153–1164, 2019
[11] Kuwada,A., Tsujino,K., Suzumori,K. and Kanda,T. “Intelligent Actuators Realizing Snake-like Small Robot for Pipe Inspection”, Okayama University ,Japan,2006
[12] Zagler, A. and Pfeiffer, F., ““MORITZ” a Pipe Crawler for Tube Junctions. IEEE International Conference on Robotics and Automation”, Cat. No.03CH3742, pp. 2955–2959, 2003.
[13] 陳昱志,《發展可用於水下檢查之雙臂結構履帶型機器人》,國立台北科技大學機電整合研究所碩士學位論文,2013。
[14] TTrobotix-產品資訊-seawolf, https://www.ttrobotix.com/zh-tw/products/detail/919.html
[15] Aluminum 2124-T851 - ASM Material Data Sheet, https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2124T851
[16] 顏鴻森和吳隆庸,《機構學》。臺灣:臺灣東華書局股份有限公司,2006。
[17] AliExpress, https://www.aliexpress.com/item/4001351625225.html?spm=a2g0o.productlist.main.1.264e67f0u4g28u&algo_pvid=647a4985-e098-4250-b64f-d4fdaa0e417c&algo_exp_id=647a4985-e098-4250-b64f-d4fdaa0e417c-0&pdp_npi=3%40dis%21TWD%21246.87%21234.51%21%21%217.99%21%21%40210219c216895858813255763d076c%2110000015774711713%21sea%21TW%210&curPageLogUid=9s8nPXZf5Wgz
[18] 永呈裕商行 DM-12 電子式測距輪,http://www.top-measure.com.tw/dm-12.html
[19] Wuwei Chen et al, “ Integrated Vehicle Dynamics and Control”, John Wiley & Sons, Inc., 2016.
[20] Juvinall,R.C.,and Marshek,K.M., “Fundamental of Machine Component Design”, John Wiley & Sons, Inc., U.S.A, 2020
[21] Vidosic,J.P., “Machine Design Projects”, Ronald Press, New York, 1957
[22] EngineeringClick, https://www.engineeringclicks.com/yield-strength/
[23] Vedantu, https://www.vedantu.com/question-answer/assertion-a-silver-is-a-ductile-material-reason-class-11-physics-cbse-5fd7d36ecd67a76506eac9c8
校內:2028-08-24公開