簡易檢索 / 詳目顯示

研究生: 林敏巧
Lin, Min-Chiao
論文名稱: 利用電滲微渦流進行粒子聚集之微流體控制系統
Microfluidic Control System for Particle Assembly by Electroosmotic Microvortices
指導教授: 黃世宏
Hwang, Shyh-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 75
中文關鍵詞: 電滲微渦流電滲流解析解收斂性分析回饋控制粒子聚集
外文關鍵詞: Electroosmotic microvortices, analytical solution of electroosmotic flow, convergence analysis, feedback control, particle assembly
相關次數: 點閱:179下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微型檢測裝置將懸浮粒子由微流道運送到感應器,檢測前須透過微流體進行粒子聚集。本論文探討在矩型微流道內懸浮粒子的聚集問題,並提出利用電滲流的調整來進行回饋控制的策略。
    本論文推導出矩形微流道內電滲流的流線函數解析解,可允許封閉區域及任意滑移速度分布之邊界條件。此解為ㄧ無窮級數展開式,由符合封閉條件之特徵函數組成,展開式係數須滿足邊界滑移條件。然而展開式係數的難收斂性容易造成其計算值的不正確,以及解析解在邊界附近收斂性不佳。為解決此困難,將展開式係數分解成難收斂和易收斂兩部分,在特定滑移速度分布下,利用難收斂部分的週期性來計算其值,進而輕易獲得易收斂部分的準確值。
    電滲微渦流和短距力可形成表面停滯點,產生粒子在該點聚集的效果,但微渦流中心附近粒子脫離困難及電滲流輸送路徑過長,使得聚集效率不佳。本文利用推導的解析解來模擬粒子聚集的回饋控制問題。所提之回饋控制策略結合基本微渦流和短距力,以接近微渦流中心之粒子作為控制對象,選擇不同位置作為虛擬目標點,最終達到粒子於停滯點的快速聚集。

    Micro sensing devices deliver suspended particles to sensors through microchannels. Prior to sensing, the particles should be assembled by microfluid. This thesis investigates the assembly of suspended particles in rectangular microchannels and proposes a feedback control strategy based on the adjustment of electroosmotic flow.
    The thesis derives an analytical solution for the stream function of electroosmotic flow in a rectangular microchannel, which allows the boundary conditions of a confined region and arbitrary slip velocity distributions. The solution is an infinite series expansion and is composed of eigenfunctions that confine fluid flow. The expansion coefficients must satisfy the boundary slip conditions. However, the expansion coefficients are difficult to converge, causing inaccuracy in calculating their values as well as poor convergence of the analytical solution in the vicinity of the boundaries. To solve this difficulty, each expansion coefficient is divided into a difficult-to-converge part and an easy-to-converge part. For specific slip velocity distributions, the periodicity of all difficult-to-converge parts can be identified and their values can be calculated. As a result, the accurate values of the easy-to-converge parts can be obtained easily.
    Electroosmotic microvortices together with short-range force could form a stagnation point on a surface to create the effect of particle assembly at that point. However, the efficiency of particle assembly is often not high because of the difficulty for particles escaping from the center of a microvortex and long travelling paths via electroosmotic flow. This thesis applies the derived analytical solution to simulate the feedback control problem of particle assembly. The proposed feedback control strategy combines the fundamental microvortices and short-range force, employs particles close to the centers of microvortices as the controlled objects, and chooses different points as virtual targets. Eventually, the control strategy can achieve fast particle assembly at the stagnation point.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 圖目錄 XI 表目錄 XV 符號表 XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 5 1.4 論文架構 6 第二章 基本原理 7 2.1 電滲流(electroosmotic flow)形成機制 7 2.2 停滯點(Stagnation Points)形成機制 9 第三章 在矩形管道中電滲微渦流的解析解 12 3.1 矩形管道中電滲微渦流的數學模型 12 3.2 基本方程式推導 15 3.3 收斂性分析 19 第四章 以電滲微渦流操控粒子運動的軌跡 30 4.1 利用電滲微渦流進行粒子聚集之數學模型 30 4.1.1 基本假設 31 4.1.2 粒子運動的統馭方程式與其軌跡 33 4.1.3 滑動速度與所需電壓的關係 35 4.1.4 控制法則原理 36 4.1.5 利用電滲流以及底部表面的停滯點聚集粒子 37 4.1.6 多顆粒子的微流體控制系統 40 4.2 解析解收斂性分析的應用 41 4.3 模擬控制系統中控制法則的應用 46 4.3.1 控制法則中被控制粒子的選擇方法 47 4.3.2 控制法則中虛擬目標點的選擇 50 第五章 結論與未來展望 59 附錄A 60 附錄B 61 參考文獻 72

    [1] 李國賓,“下一波生物晶片–微流體生醫晶片,”《科學發展》,385,72 (2005)。

    [2] 陳明宏、曾繁根,“數位化微流體操縱技術,”《科學發展》,405,50 (2006)。

    [3] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing," Sensors and Actuators B Chemical, 1, 244 (1990).

    [4] Y. Ben and H. C. Chang, "Nonlinear Smoluchowski Slip Velocity and Micro-vortex Generation," Journal of Fluid Mechanics, 461, 229 (2002).

    [5] Y. Ben, "Nonlinear Electrokinetic Phenomena in Microfluidic Devices," Ph.D. Dissertation, University of Notre Dame (2004).

    [6] R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications. New York: Academic Press (1981).

    [7] S. Ghosal, "Fluid Mechanics of Electroosmotic Flow and Its Effect on Band Broadening in Capillary Electrophoresis," Electrophoresis, 25, 214 (2004).

    [8] S. Qian and H. H. Bau, "A Chaotic Electroosmotic Stirrer," Analytical Chemistry, 74, 3616 (2002).

    [9] S. Qian and H. H. Bau, "Theoretical Investigation of Electro-osmotic Flows and Chaotic Stirring in Rectangular Cavities," Applied Mathematical Modelling, 29, 726 (2005).

    [10] E. Brunet and A. Ajdari, "Thin Double Layer Approximation to Describe Streaming Current Fields in Complex Geometries: Analytical Framework and Applications to Microfluidics," Physical Review E, 73, 056306 (2006).

    [11] S. Dukhin, R. Miller, and G. Kretzschmar, "On the Theory of Adsorption Kinetics of Ionic Surfactants at Fluid Interfaces," Colloid and Polymer Science, 261, 335 (1983).

    [12] D. Long, H. A. Stone, and A. Ajdari, "Electroosmotic Flows Created by Surface Defects in Capillary Electrophoresis," Journal of Colloid and Interface Science, 212, 338 (1999).

    [13] A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. Huck, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, "Patterning Electro-osmotic Flow with Patterned Surface Charge," Physical Review Letters, 84,15 (2000).

    [14] A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, "AC Electric-field-induced Fluid Flow in Microelectrodes," Journal of Colloid and Interface Science, 217, 420 (1999).

    [15] A. Ajdari, "Pumping Liquids Using Asymmetric Electrode Arrays," Physical Review E, 61, 45 (2000).

    [16] A. Gonzalez, A. Ramos, N. G. Green, A. Castellanos, and H. Morgan, "Fluid Flow Induced by Nonuniform AC Electric Fields in Electrolytes on Microelectrodes. II. A Linear Double-layer Analysis," Physical Review E, 61, 4019 (2000).

    [17] D. Holmes and H. Morgan, Particle Focusing and Separation Using Dielectrophoresis in a Microfluidic Device. Massachusetts: Kluwer Academic Publishers (2001).

    [18] J. Wu, Y. Ben, D. Battigelli, and H. C. Chang, "Long-range AC Electroosmotic Trapping and Detection of Bioparticles," Industrial and Engineering Chemistry Research, 44, 2815 (2005).

    [19] P. K. Wong, T. H. Wang, J. H. Deval, and C. M. Ho, "Electrokinetics in Micro Devices for Biotechnology Applications," IEEE/ASME Transactions on Mechatronics, 9, 366 (2004).

    [20] J. Kreft, Y. L. Chen, and H. C. Chang, "Conformation and Trapping Rate of DNA at a Convergent Stagnation Point," Physical Review E, 77, 30801 (2008).

    [21] J. R. Du, Y. J. Juang, J. T. Wu, and H. H. Wei, "Long-range and Superfast Trapping of DNA Molecules in an AC Electrokinetic Funnel," Biomicrofluidics, 2, 044103 (2008).

    [22] S. K. Thamida and H. C. Chang, "Nonlinear Electrokinetic Ejection and Entrainment Due to Polarization at Nearly Insulated Wedges," Physics of Fluids, 14, 4315 (2002).

    [23] D. Hou and H. C. Chang, "Electrokinetic Particle Aggregation Patterns in Microvortices Due to Particle-field Interaction," Physics of Fluids, 18, 071702 (2006).

    [24] S. J. Liu, H. H. Wei, S. H. Hwang, and H. C. Chang, "Dynamic Particle Trapping, Release, and Sorting by Microvortices on a Substrate," Physical Review E, 82, 026308 (2010).

    [25] J. Wu, Y. Ben, D. Battigelli, and H. C. Chang, "Long-range AC Electroosmotic Trapping and Detection of Bioparticles," Industrial and Engineering Chemistry Research, 44, 2815 (2005).

    [26] L. Y. Yeo and J. R. Friend, "Ultrafast Microfluidics Using Surface Acoustic Waves," Biomicrofluidics, 3, 012002 (2009).

    [27] H. C. Chang and G. Yossifon, "Understanding Electrokinetics at the Nanoscale: A perspective," Biomicrofluidics, 3, 012001 (2009).

    [28] C. K. Sun, Y. C. Huang, P. C. Cheng, H. C. Liu, and B.L Lin, " Cell Manipulation by Use of Diamond Microparticles as Handles of Optical tweezers," Journal of the Optical Society of America B, 18, 1483 (2001).

    [29] J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic Holographic Optical Tweezers," Optics Communications, 207, 169 (2002).

    [30] M. Armani, S. Chaudhary, R. Probst, and B. Shapiro, "Using Feedback Control and Micro-fluidics to Steer Individual Particles," IEEE International Conference on Micro Electro Mechanical Systems, 18, 855 (2005).

    [31] S. Chaudhary and B. Shapiro, "Arbitrary Steering of Multiple Particles Independently in an Electro-osmotically Driven Microfluidic System," IEEE Transactions on Control Systems Technology, 14, 669 (2006).

    [32] Y. W. Hsu, "Control and Trapping of Particles by Electroosmotic Flow in Semicircular and Square Microchannels," Master Thesis, National Cheng Kung University (2012).

    [33] L. Y. Yeo, H. C. Chang, P. P. Y. Chan, and J. R. Friend," Microfluidic Devices for Bioapplications," Small, 7, 12 (2011).

    [34] R. F. Probstein, Physicochemical Hydrodynamics: An Introduction, 2nd ed., John Wiley and Sons, New York (1994).

    [35] P. C. Tsai, "A Fast Converging Analytical Solution of Electroosmotic Flow and Its Applications in Microparticle Mixing," Master Thesis, National Cheng Kung University (2015).

    [36] N. A. Patankar and H. H. Hu, "Numerical Simulation of Electroosmotic Flow," Analytical chemistry, 70, 1870 (1998).

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE