簡易檢索 / 詳目顯示

研究生: 胡竣翔
Hu, Jyun-Siang
論文名稱: 不同鏈黴菌株生產抗生活性物質能力之比較
The comparison of the ability of producing antibiotic compounds by different species of Streptomyces
指導教授: 高銘木
Kao, Ming-Muh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 120
中文關鍵詞: 鏈黴菌屬吸收光譜透明圈醱酵培養分子生物技術
外文關鍵詞: spectrum, clear zone, fermentation, molecular biology technique, Streptomyces
相關次數: 點閱:158下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對澄清湖水庫底泥中進行放線菌的篩選,搭配分子生物技術鑑定菌株,希望能經由醱酵培養後產生具抑制效果之活性物質,並藉由UV-Vis光譜分析及透明圈表現來建立抗菌圖譜。
    經分子生物技術鑑定從底泥中篩選出之菌種,其結果顯示,共篩選出7株放線菌,其中4株屬於Streptomyces屬,分別為菌種B23、B31、B32、B35,而只有B31經比對後為Streptomyces hosalacineus,其餘3株均比對出許多親緣關係較相近之菌種;而菌種B38與菌種B41,為放線菌中Nocardia的Rhodococcus屬;另1株菌種A3,則為Cellulosimicrobium cellulans。
    最適萃取劑部份,以甲、乙醇作為醱酵液萃取劑之效果明顯優於乙酸乙酯。UV-Vis吸收光譜部份,選購之純菌其最大吸收波長約257-260nm,而自篩之鏈黴菌最大吸收波長約在254-264nm之間,且亦進一步發現不同醱酵培養天數為造成最大吸收波長不同之主要的影響因子之一。
    拮抗活性表現方面,選購純菌之透明圈表現普遍較自篩菌為佳,而在自篩菌方面,其對E. coli所展現之透明圈最大、Fungi居次,Bacillus亦有不錯效果,故可推論經醱酵培養所產生之活性物質對於革蘭氏陰性菌及絲狀真菌之拮抗效果較佳,而在Yeast及Staphylococus部份,由透明圈的觀察結果可發現,無論是選購純菌或自篩菌,對其展現之拮抗性皆較其餘測試菌株為低,顯示其產生之拮抗效果相當有限。

    關鍵字:鏈黴菌屬、分子生物技術、醱酵培養、吸收光譜、透明圈

    This study mainly investigated molecular biology technique to identify Actinomycetes were isolated from sediment of the Cheng-Ching reservoir and estimated the effectiveness of inhibition of the active compounds-produced during fermentation process. Then, the analysis of UV spectrum was accomplished to observe the range of clear zones and establish the antibacterial spectrum.
    The results of molecular biology technique showed that there are seven kinds of Actinomycetes were isolated from the sediment. After we contrasted with the database from NCBI website, we found that the B23, B31, B32, B35 could be identified as Streptomyces. The results showed B31 is classified to Streptomyces hosalacineus, and the others have closed-relationship from the phylogenetic tree. At last, B38 and B41 are identified as Rhodococcus of Nocardia and A3 is confirmed as Cellulosimicrobium cellulans.
    In the experiments of proper extraction solvent, we found methanol or ethanol as extract during fermentation procedure were better than ethyl acetate. In the analysis of UV spectrum, the highest absorbance was observed at 257nm to 260nm and 254nm to 264nm of the pure cultures from BCRC and bacteria isolated from sediment, respectively. The results of fermentation indicated that different fermentation periods are one of the major factors to induce the variations of the highest absorbance.
    The performance of clear zone with pure culture is better than bacteria isolated from sediment. The orders of clear zone range of test organisms were E. coli、Fungi and Bacillus. The inhibited effects from active compounds of Gram negative and mycelium fungus after fermentation were better than other test organisms. Regardless of pure culture from BCRC or bacteria isolated from sediment, the inhibited effects of Yeast and Staphylococus were both lower than others.

    Key words:Streptomyces, molecular biology technique, fermentation, spectrum, clear zone

    摘要                           I Abstract                        III 誌謝                           V 目錄                           VI 表目錄                          IX 圖目錄                          XI 第一章 前言                       1   1-1 研究緣起                    1   1-2 研究目的                    3 第二章 文獻回顧                     4   2-1 放線菌的生活史                 4   2-2 放線菌分類                   6   2-3 放線菌分離條件探討               12   2-4 分子生物技術應用於菌種鑑定的研究        16    2-4-1 DNA萃取                   17    2-4-2 聚合酶鏈鎖反應               17    2-4-3 瓊脂膠體電泳(Gel Electrophoresis)      21    2-4-4 分子選殖(Cloning)              21    2-4-5 限制酵素片段長度多型性(RFLP)        22    2-4-6 定序                    23   2-5 抗生素之作用機轉                23   2-6 醱酵培養                    25   2-7 活性物質之萃取與純化              27   2-8 吸收光譜                    28 第三章 實驗材料與方法                  30   3-1 實驗器材與藥品                 31   3-2 菌種來源                    35   3-3 菌種培養與純化                 35   3-4 菌種的保存與增量                37   3-5 DNA萃取                     37   3-6 聚合酶鏈鎖反應                 39   3-7 Cloning                     41    3-7-1 切膠與溶膠                 42    3-7-2 Ligation(接合反應)             44    3-7-3 製備LBA Medium               46    3-7-4 勝任細胞之轉殖               47    3-7-5 藍白篩挑菌                 48    3-7-6 萃取plasmid DNA               48   3-8 RFLP                      50   3-9 定序與親緣關係分析               52   3-10 醱酵培養                    58    3-10-1 最適萃取劑測試               58   3-11 透明圈觀察                   59 第四章 結果與討論                    60   4-1 環境樣品中菌種之篩選與鑑定            60    4-1-1 選擇分離培養基               60    4-1-2 DNA萃取                   61    4-1-3 PCR反應                   62    4-1-4 Insert Check                65    4-1-5 RFLP                    70    4-1-6 定序與親緣關係分析             74   4-2 最適萃取劑選定                 77   4-3 吸收光譜 78    4-3-1 自行選購純菌醱酵液之吸光度分析       78    4-3-2 環境樣品醱酵液之吸光度分析         83   4-4 拮抗活性表現                   87    4-4-1 自行選購純菌之表現             87    4-4-2 環境樣品中自篩菌之表現           92 第五章 結論與建議                    95   5-1 結論                      95   5-2 建議                      97 參考文獻                         98 附錄                          106 自述                          120 表目錄 表2-1 分枝桿菌科之相關特性 7 表2-2 放線菌屬之相關特性 8 表2-3 諾卡氏菌屬之相關特性 9 表2-4 鏈黴菌屬之相關特性 10 表2-5 Streptosporangiaceae之相關特性 11 表2-6 動物糞便樣本在不同前處理法下所篩得之放線菌菌數 12 表2-7 動物糞便樣本在不同分離培養基下所篩得之放線菌菌數 14 表2-8 不同前處理法下糞生放線菌在不同分離培養基中的分佈情形15 表2-9 鑑定鏈黴菌屬之專一性primer 19 表2-10 PCR之反應條件 20 表2-11 影響生產抗生素因子 26 表3-1 Bennett’s Agar配製組成 31 表3-2 Actinomycete Isolation Agar, AIA 31 表3-3 Yeast extract-Malt extract Agar 32 表3-4 Yeast extract Glucose Medium, YGM 32 表3-5 Fermentation Medium 32 表3-6 Malt Extract Agar I 33 表3-7 Yeast extract-Malt extract Agar Medium, YMA 33 表3-8 分子生物實驗藥品 33 表3-9 實驗儀器設備 34 表3-10 PCR反應試劑添加量 40 表3-11 Ligation加藥量 45 表3-12 限制酶酵素之切點 51 表3-13 RFLP所需試劑與用量 51 表4-1 PCR反應循環參數之比較 62 表4-2 菌種S3經萃取後之抗菌活性表現 77 表4-3 三株選購之鏈黴菌經生長培養7天後之抗菌活性表現 90 表4-4 三株選購之鏈黴菌經生長培養14天後之抗菌活性表現 91 表4-5 四株自篩鏈黴菌經生長培養7天後之抗菌活性表現 94 圖目錄 圖3-1 實驗架構流程圖 30 圖3-2 Cloning流程圖 41 圖3-3 序列整理格式 52 圖3-4 序列貼上處 53 圖3-5 轉換中示意圖 53 圖3-6 轉換結果示意圖 53 圖3-7 序列前端修整前示意圖 54 圖3-8 存成FASTA格式示意圖 54 圖3-9 修改格式內容示意圖 55 圖3-10 操作示意圖 55 圖3-11 選擇載入類型 56 圖3-12 確認視窗 56 圖3-13 選擇NJ計算法 56 圖3-14 Bootstrap參數設定 57 圖3-15 分析參數示意圖 57 圖3-16 分液漏斗分層圖 59 圖3-17 DSTA測試培養基 59 圖4-1 DNA萃取電泳膠片圖 61 圖4-2 徐(2005)之PCR反應條件下之電泳膠片圖 63 圖4-3 本研究所使用之PCR反應條件下之電泳膠片圖 64 圖4-4 菌種B23 Insert Check示意圖 65 圖4-5 菌種B31 Insert Check示意圖 66 圖4-6 菌種B32 Insert Check示意圖 66 圖4-7 菌種B35 Insert Check示意圖 67 圖4-8 菌種B38 Insert Check示意圖 67 圖4-9 菌種B41 Insert Check示意圖 68 圖4-10 菌種A3 Insert Check示意圖 68 圖4-11 菌種B23之RFLP示意圖 71 圖4-12 菌種B31之RFLP示意圖 72 圖4-13 菌種B32之RFLP示意圖 72 圖4-14 菌種B35之RFLP示意圖 73 圖4-15 實驗菌種比對之親緣關係圖 76 圖4-16 菌種S1生長7天後不同醱酵天數和萃取劑下吸收峰比較圖 79 圖4-17 菌種S1生長14天後不同醱酵天數和萃取劑下吸收峰比較圖 79 圖4-18 菌種S2生長7天後不同醱酵天數和萃取劑下吸收峰比較圖  80 圖4-19 菌種S2生長14天後不同醱酵天數和萃取劑下吸收峰比較圖 80 圖4-20 菌種S3生長7天後不同醱酵天數和萃取劑下吸收峰比較圖  81 圖4-21 菌種S3生長14天後不同醱酵天數和萃取劑下吸收峰比較圖 81 圖4-22 菌種B23生長7天後不同醱酵天數和萃取劑下吸收峰比較圖 84 圖4-23 菌種B31生長7天後不同醱酵天數和萃取劑下吸收峰比較圖 84 圖4-24 菌種B32生長7天後不同醱酵天數和萃取劑下吸收峰比較圖 85 圖4-25 菌種B35生長7天後不同醱酵天數和萃取劑下吸收峰比較圖 85 圖4-26 透明圈示意圖                    87

    林子文,「放線菌所生產抗真菌劑之篩選研究」,國立陽明大學生命科學院生物化學研究所碩士論文,民國八十八年七月。
    林茂勇、羅永村、江郁祺、陳瑞雄,「台灣最近分離的家禽致死病原菌之藥物敏感性調查」,台灣畜牧獸醫學會會報,Vol. 65, p. 47-54, 1995。
    林錦瑩,「土壤分離菌Streptomyces sp. 所生產天然抗氧化成分之探索研究」,私立台北醫學大學院醫學研究所碩士論文,民國九十年六月。
    林蘭君,「探討NaCl對於Streptomyces toxytrini發酵生產脂肪抑制劑Lipstatin的影響」,國立中央大學化學工程與材料工程研究所碩士論文,民國九十四年七月。
    徐尉晏,「應用分生技術鑑定澄清湖水庫之放線菌及探討營養源氮磷之影響」,國立成功大學環境工程研究所碩士論文,民國九十四年六月。
    陳欣孝,「放線菌Streptomyces saraceticus No. 31菌株所產生抗生物質理化與生物特性之研究」,國立中興大學植物病理學系研究所碩士論文,民國八十七年七月。
    許雅雯,「應用批次與連續流試驗探討實驗室分離之除臭菌株對水庫中臭味物質降解之能力」,國立成功大學環境工程研究所碩士論文,民國九十五年七月。
    張德生、曾敏,「台灣土壤放線菌抗真菌劑生產菌株之篩選研究」,第十屆生化工程研討會論文集1-p-59,民國94年。
    國立台灣大學生物技術研究中心,「生物技術方法」,卷一,生物技術核心實驗,民國九十四年。
    國立成功大學生物資訊中心,「生物資訊分析軟體教育課程Vector NTI」,民國九十五年。
    盧柏樑,「抗生素與抗藥性」,高醫醫訊月刊第二十二卷第十一期,民國九十二年。
    網站,http://zh.wikipedia.org/w/index.php,維基百科,細菌分類表。
    Boudemagh, A., M. Kitouni, F. Boughachiche, H. Hamdiken, L. Oulmi, S. Reghioua, H. Zerizer, A. Couble, D. Mouniee, A. Boulahrouf and P. Boiron. Isolation and molecular identification of Actinomycete microflora, of some saharian soils of south east Algeria (Biskra, EL-Oued and Ourgla) study of antifungal activity of isolated strains. Journal de Mycologie Medicale, 15, 39-44, 2005.
    Boeck, L. D., K. L. Christy and R. Shah. Production of anticapsin by Streptomyces griseoplanus. Appl. Microbiol., 21, 1075-1079, 1971.
    Demain, A. L.. Regulatory mechanisms and the industrial production of microbial metabolites. Lloydia, 31, 395-418, 1968.
    Drew, S. W. and A. L. Demain. Effect of primary metabolites on secondary metabolism. Ann. Rev. Microbiol, 31, 343-356, 1977.
    Gesheva, V., V. Ivanova and R. Gesheva. Biological characteristics and antibiotic production of Streptomyces hygroscopicus strains. The Actinomycetes, 5, 57-63, 1994.
    Heuer, H., M. Krsek, P. Baker, K. Smalla and E. M. H. Wellington. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appllied Environmental Microbiology, 63, 3233-3241, 1997.
    Hirsch, C. F. and D. L. Christensen. Novel Method for Selective Isolation of Actinomycetes. Applied and Environmental Microbiology, 46, No. 4, 925-929, 1983.
    Horan, A. C.. Secondary metabolite production Actinomycetes other than Streptomyces. In Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation ed. Flickinger, M. C. and S. W. Drew, 2333-2348, 1999. New York: Wiley and Sons.
    Innis, M. A. and D. H. Gelfand. Optimization of PCRs In: PCR Protocols: A Guide in Methods and Application. Edited by Innis, M. A., D. H. Gelfand, J. J. Sninsky and T. J. White. Academic Press, INC., 3-12, 1990.
    Iwai, Y. and S. Omura. Cultural conditions for screening of new antibiotics, J. Antibiotics, 34, 123-141, 1992.
    Kitouni, M. and A. Boudemagh. Isolation of Actinomycetes producing bioactive substances from water, soil and tree bark samples of the north-east Algeria. Journal de Mycologie Medicale, 15, 45-51, 2005.
    Lane, D. J., B. Pace, G. J. Olsen, D.A. Stahl, M. L. Sogin and N. R. Pace. Rapid Determination of 16S ribosomal RNA sequences for Phylogenetic Analysis. Proc. Natl. Acad. Sci. USA., 82, 1985.
    Lazzarini, A., L. Caveletti, G. Toppo and F. Marinelli. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek, 78, 399-405, 2000.
    Liu, J. K., C. H. Liu and C. S. Lin. The Role of Nitrogenase in a Cyanide-degrading Klebsiella Oxytoca Strain. Proc. Natl. Sci. Counc. Repub. China, 2, 37-42, 1997.
    Marcello, P. R. and A. Lennon. Rapid Identification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, and Haemophilus paraphrophilus by Restriction Enzyme Analysis of PCR-Amplified 16S rRNA Genes. J. Clinical Microbiology, 35, No. 6, 1630-1632, 1997.
    McCarthy, A. J. and S. T. Williams. Actinomycetes as agents of biodegradation in the environment – a review. Gene, 115, 189-192, 1992.
    Mehling, A., U. F. Wehmeier and W. Piepersberg. Nucleotide sequence of srteptomycete 16S ribosomal DNA: towards a specific identification system for streptomycetes using PCR. Microbiology, 141, 2139-2147, 1995.
    Mullis, K., F. Faloona, S. Scharf, R. Saiki, G. Horn and H. Erlich. Specific Enzymatic Amplification of DNA in Vitro: the Polymerase Chain Reaction, Cold Spring Harbor Symp. Quant. Biol., 51, 263-273, 1986.
    Monciardini, P., M. Sosio, L. Cavaletti, C. Chiocchini and S. Donadio. New PCR primers for the selective amplification of 16S rDNA from different groups of Actinomycetes, FEMS Microbiology Ecology, 42, 419-429, 2002.
    Nakayama, K.. Regulation of microbial secondary metabolism. Amino Acid-Nucleic Acid (Japan), 36, 1-33, 1977.
    Nurettin, PAHÜN and UÚUR Aysel. Investigation of the Antimicrobial Activity of Some Streptomyces Isolates. Turk J. Biol., 23, 79-84, 2003.
    Okami, Y. and A. K. Hotta. Search and discovery of new antibiotics, in: Goodfellow, M., S. T. Williams and M. Mordarski(Eds.), Actinomycetes in Biotechnology, Academic Press, London, 33-67, 1988.
    Olsen, G. J., S. J. Lane, N. R. P. Giovannoni and D. A. Stahl. Microbial Ecology and Evolution: a ribosomal RNA Approach. Annu. Rev. Microbiol., 40, 1987.
    Omura, S., H. Ikeda, J. Ishikawa, A. Hanamoto, C. Takahashi, M. Shinose, Y. Takahashi, H. Horikawa, H. Nakazawa, T. Osonoe, H. Kikuchi, T. Shiba, Y. Sakaki and M. Hattori. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA, 12215-12220, 1998.
    Ouhdouch, Y., M. Barakate and C. Finance. Actinomycetes of Moroccan habitats: Isolation and screening for antifungal activities. Eur. J. Soil Biol., 37, 69-74, 2001.
    Piret, J. M. and A. L. Demain. Actinomycetes in Biotechnology. An overwier. In: Goodfellow, M., S. T. Williams and M. Mordarski editors. Actinomycetes in Biotechnology. London: Academic Press, 461-482, 1988.
    Rake, G. and R. Donovick. Studies on the nutritional requirements of Streptomyces griseus for the formation of streptomycin. J. Bacteriol, 52, 223-226, 1946.
    Richard, E. H., A. Z. James, D. G. Jeffrey and D. H. Matthew. Rapid Method To Estimate the Presence of Secondary Metabolites in Microbial Extracts, Applied and Environmental Microbiology, 67, 371-376, 2001.
    Rintala, H., A. Nevalainen, E. Ronka and M. Suutari. PCR primers targeting the 16S rRNA gene for the specific detection of Streptomycetes, Molecular and Cellular Probes, 15, 337-347, 2001.
    Saadoun, I., K. M. Hameed and A. Moussauui. Characterization and analysis of antibiotic activity of some aquatic Actinomycetes. Microbios, 99, 173-179, 1999.
    Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich and N. Arngeim. Enzymatic Amplification of a-globin Genomic Sequences and Restriction Site Analysis Diagnosis of Sickle Cell Anemia. Science., 230, 1350-1354, 1985.
    Sanglier, J.J., H. Haag, J.A. Huck and T. Fehr. Review of Actinomycetes compounds 1990-1995. Expert Opinion and Investigational Drugs, 5, 207-223, 1996.
    Shomura, T., J. Yoshida, S. Amano, M. Kojima, S. Inouye and T. Niida. Studies On Actinomycetales Producing Antibiotics Only On Agar Culture. Journal of Antibiotics, 32, 427-435, 1979.
    Slavica, B. I., S. K. Sandra and B. T. Zoran. UV/VIS Analysis and Antimicrobial Activity of Streptomyces Isolates. Medicine and Biology, 12, No. 1, 44-46, 2005.
    Stackebrandt, E., D. Witt, C. Kemmerling, R. Kroppenstedt and W. Liesack. Designation of streptomycete 16S and 23S rRNA-based target regions for oligonucleotide probes. Appl. Environ. Microbiol., 57, 1468-1477, 1991.
    Vanessa, M. C. and M. M. F. Christopher. Analysis of the Endophytic Actinobacterial Population in the Roots of Wheat (Triticum aestivum L.) by Terminal Restriction Fragment Length Polymorphism and Sequencing of 16S rRNA Clones. Applied and Environmental Microbiology, 70, No. 3, 1787–1794, 2004.
    Weinberg, E. D.. Secondary metabolism: Control by temperature and inorganic phosphate. Dev. Ind. Microbiol, 15, 70-81, 1973.
    Woese, C. R.. Bacterial Evolution. Microbiol. Rev., 51, 221-271, 1987.
    Yoshida, N., Y. Tani and K. Ogata. Antibiotics produced by hydrocarbon-utilizing Actinomyces. J. Antibiotics, 25, 546-547, 1972.
    Yoshida, N., Y. Tani and K. Ogata. Cryomycin, a new peptide antibiotic produced only at low temperature. J. Antibiotics, 25, 653-659, 1972.
    Yoshida, N., S. Hayashi, Y. Tani and K. Ogata. M-81, a new peptide antibiotic produced by Streptomyces griseus subsp. Psychrophilus at moderate temperature. J. Antibiotics, 27, 128-132, 1974.

    下載圖示 校內:2008-07-20公開
    校外:2008-07-20公開
    QR CODE