| 研究生: |
詹承學 Chan, Cheng-Hsueh |
|---|---|
| 論文名稱: |
60-GHz CMOS非接觸式人體生理訊號感測都卜勒雷達射頻晶片與毫米波平面天線的介面鎊線連接電磁結構之設計研究 Research on EM Modeling of Bondwire-Interconnection between 60-GHz Vital-Signs Doppler Radar RF Sensor Chip and Millimeter-Wave Planar Antenna |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 鎊線 、毫米波 、人體生理訊號感測 、封裝 |
| 外文關鍵詞: | 60-GHz millimeter-wave (MMW), bondwire, wire-bonding, human vital-signs detection, package |
| 相關次數: | 點閱:111 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文進行60-GHz CMOS非接觸式人體呼吸心跳生理訊號感測都卜勒雷達射頻晶片與毫米波平面天線的介面鎊線連接之電磁結構的設計研究,致力於設計低損耗之鎊線匹配網路取代連接感測晶片與天線間之電纜線(RF cable),以提昇雷達模組的偵測距離,同時整合感測晶片與平面天線於一Rogers RT/duroid 5880與FR4之四層印刷電路複合載板。本研究利用鎊線匹配網路使天線輸入阻抗與晶片輸出阻抗達成共軛匹配(conjugate matching),匹配網路設計主要使用電感-電容-電感(L-C-L)形成T型匹配網路架構(T-matching network),並加入並聯鎊線與開路截線。電路設計以ANSYS之3D全波電磁模擬軟體HFSS進行模擬。量測部分,使用號角天線量測雷達模組發射功率,搭配弗林斯能量傳播方程式(Friis power transmission formula)計算60 GHz時鎊線介面連接損耗。最後,使用整合感測晶片與平面天線之複合載板雷達模組量測致動器振動與人體呼吸心跳訊號,並與使用電纜線連接之量測資料進行比較。量測與理論推算之雷達模組偵測範圍具相當一致性,感測晶片與平面天線之鎊線整合雷達模組比起以電纜線連接之偵測距離,由75公分提昇至約1.05~1.2公尺。
This thesis presents the research on EM modeling of bondwire-interconnection between 60-GHz human vital-signs Doppler radar RF sensor chip and millimeter-wave planar patch-array antenna. It is to replace the cable connection between the chip and antenna by a low-loss bondwire matching network during the measurement [4][5] and for the practial vital-signs detection application. The implemented bondwire-interconnection can integrate the 60-GHz sensor chip and planar antenna on the four-layer composite PCB fabricated by Rogers RT/duroid 5880 and FR4 substrates. It also improves the vital-signs detection range by this integrated radar module than the cable connection configuration of the antnna and the chip. In this research, the bondwire matching network is employed to realize conjugate matching between the chip and antenna. An L-C-L structure is adopted to form a T-matching network. Besides, parallell bondwires and floating open-ended stubs are applied in the matching network. Measurement results indicate that the total loss of bondwire-interconnection at 60 GHz is 3.1 dB, from the Friis power transmission formula. For the experiment of non-contact vital-signs detection, the demonstrated measurement results show that the low-loss bondwire-interconnection significantly enhances the human vital-signs detection distance up to 105 cm, which is 1.4 times greater than that using the cable connection.
[1]J. A. Howarth, A. P. Lauterbach, M. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60GHz radios: Enabling next-generation wireless applications,” in Proc. TENCON 2005 IEEE Region 10, pp. 1–6.
[2]K. Bon-Hyun et al., “A 77-81-GHz 16-element phased-array receiver with ±50º beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2823–2832, Nov. 2014.
[3]IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
[4]郭信智,應用於極短距離Gigabit毫米波無線通訊及非接觸式人體生理訊號感測都卜勒雷達之60-GHz CMOS收發機射頻晶片設計研究,國立成功大學電腦與通信工程研究所博士論文,民國一百零四年
[5]H.-C. Kuo, C.-C. Lin, C.-H. Yu, P.-H. Lo, J.-Y. Lyu, C.-C. Chou and H.-R. Chuang, “A fully-integrated 60-GHz CMOS direct-conversion doppler radar RF sensor with clutter canceller for single-antenna,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 4, pp. 1018–1028, Apr. 2016.
[6]F. Zhu et al., “A low-power low-cost 45-GHz OOK transceiver system in 90-nm CMOS for multi-Gb/s transmission,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 9, pp. 2105–2117, Sep. 2014.
[7]韓府義,應用於射頻晶片-封裝共模擬之覆晶及鎊線晶片尺寸封裝模型化研究,國立中山大學電機工程研究所博士論文,民國九十七年。
[8]W. Heinrich, “The flip-chip approach for millimeter wave packaging,” IEEE Microw. Mag., vol. 6, no. 3, pp. 36–45, Sep. 2005.
[9]G. Liu, A. Trasser, A. Ulusoy, and H. Schumacher, “Low-loss, low cost, IC-to-board bondwire interconnects for millimeter-wave applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2011, pp. 1–4.
[10]吳偉誠,高頻覆晶連接線之研究,國立交通大學材料科學與工程研究所博士論文,民國九十六年
[11]C. H. Li, C. L. Ko, C. N. Kuo, M. C. Kuo, and D. C. Chang, “A low-cost DC-to-84-GHz broadband bondwire interconnect for SoP heterogeneous system integration,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4345–4352, Dec. 2013.
[12]Y. Zhang, M. Sun, K. Chua, L. L. Wai, and D. Liu, “Antenna-in-package design for wirebond interconnection to highly integrated 60-GHz radios,” IEEE Trans. Antennas Propag., vol. 57, no. 10, pp. 2842–2852, Oct. 2009.
[13]R. Wang, Y. Sun, and J.-C. Scheytt, “An on-board differential bunny-ear antenna design for 60 GHz applications,” in German Microw. Conf., 2010, pp. 9–12.
[14]R. H. Caverly, “Characteristic impedance of integrated circuit bondwire,” IEEE Trans. Microw. Theory Techn., vol. MTT-34, no. 9, pp. 982-984, Sept. 1986.
[15]T. Krems, W. Haydl, H. Massler, and J. Rudiger, “Milimeter-wave performance of chip interconnections using wire bonding and flipchip,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1996, pp. 247–250.
[16]Reinhold Ludwig and Pavel Bretchko, RF Circuit Design, Theory and Applications, Prentice-Hall, 2000
[17]S. Jameson and E. Socher, “A 67–110 GHz CMOS to WR-10 waveguide transition using wirebonds and wideband microstrip launcher,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–4.
[18]S. Jameson and E. Socher, “A wide-band CMOS to waveguide transition at mm-wave frequencies with wire-bonds,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 9, pp. 2741–2750, Sep. 2015.
[19]Y. Zhang, D. Zhao, and P. Reynaert, “Millimeter-wave packaging on alumina board for E-band CMOS power amplifiers,” in Proc. IEEE Power Amplifier Wireless Radio Appl. Top. Conf., Jan. 2015, pp. 1–3.
[20]Yaoming Sun, “Design of an Integrated 60 GHz Transceiver Front-End in SiGe: BiCMOS Technology,” Ph.D. dissertation, Brandenburg University of Technology, 2009
[21]V. Valenta, H. Schumacher, T. Spreng, V. Ziegler, D. Dancila, and A. Rydberg, “Experimental evaluation of differential chip-to-antenna bondwire interconnects above 110 GHz,” in Proc. 44th Eur. Microw. Conf., Oct. 2014, pp. 1008–1011.
[22]Y. C. Lin, Y. C. Lin, T. S. Horng, L.-T. Hwang, C. T. Chiu, and C. P. Hung, “Low cost QFN package design for millimeter-wave applications,” in Proc. IEEE Electron. Compon. Technol. Conf., Jun. 2012, pp. 915–919.
[23]Y. C. Lin, W. S. Li, T. S. Horng, and L.-T. Hwang, “High performance plastic molded QFN package with ribbon bonding and a defective PCB ground,” in Proc. IEEE Electron. Compon. Technol. Conf., May 2013, pp. 1644–1649.
[24]Y.-C Lin, W.-H. Lee, T.-S. Horng, and L.-T. Hwang, “Full chip-package-board co-design of broadband QFN bonding transition using backside via and defected ground structure,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 4, no. 9, pp. 1470–1479, Sept. 2014.
[25]林義傑,應用於毫米波鎊線封裝之寬頻互連結構設計,國立中山大學電機工程學系博士論文,民國一百零四年
[26]R. Shireen, S. Shi, P. Yao, and D. W. Prather, “Multi-chip module packaging for W-band LiNbO3 modulator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 145–147, Mar. 2011.
[27]R. Wang, Y. Sun, C. Wipf, and J. C. Scheytt, “An onboard differential patch array antenna and interconnects design for 60 GHz applications,” in IEEE on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), Nov. 2011 , pp. 1–5.
[28]Chun-Hsing Li, Chun-Lin Ko, Chien-Nan Kuo, Ming-Ching Kuo, and Da-Chiang Chang, “A low-cost broadband bondwire interconnect for heterogeneous system integration,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2013, pp. 1-4
[29]Chun-Hsing Li, Chih-Wei Lai, Tzu-Chao Yan, and Chien-Nan Kuo, “A low-cost broadband bondwire interconnect for THz heterogeneous system integration,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2015, pp. 1–4.
[30]Wei-Min Wu, Ming-Che Yu, Chun-Hsing Li and Chien-Nan Kuo, “A low-cost DC-to-92 GHz broadband three-path bondwire interconnect,” in Proc. IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), Aug. 2015, pp. 34–36.
[31]T. P. Budka, “Wide-bandwidth millimeter-wave bond-wire interconnects,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 4, pp. 715–718, Apr. 2001.
[32]Richard Chi-Hsi Li, RF Circuit Design, 2nd ed., John Wiley and Sons Ltd., 2012.
[33]D. M. Pozar, Microwave Engineering, 4th ed., John Wiley and Sons Ltd., 2011
[34]Y. Huang and K. Boyle, Antenna From Theroy to Practice, 1st ed., John Wiley and Sons Ltd., 2008
[35]C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 3143–3152, Dec. 2008.
[36]C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., 2008, pp. 567–570.
[37]T. Huang, J. Lin, and L. Hayward, “Non-invasive measurement of laboratory rat’s cardiorespiratory movement using a 60-GHz radar and nonlinear Doppler phase modulation,” IEEE Int. Microw. RF Wireless Techn. Biomed. Healthcare Appl., pp. 83-84, Sept. 2015.
[38]C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4464–4471, Dec. 2006.