簡易檢索 / 詳目顯示

研究生: 莊士緯
Chuang, Shih-Wei
論文名稱: 高溫質子交換膜燃料電池用之含氟聚苯咪唑合成及性質之研究
Synthesis and properties of fluorine-containing polybenzimidazole for high-temperature proton exchange membrane fuel cells
指導教授: 許聯崇
Hsu, Lien-Chung Steve
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 148
中文關鍵詞: 聚苯咪唑燃料電池奈米複合材料
外文關鍵詞: fuel cell, nanocomposite, polybenzimidazole
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究的第一部份是藉由3,3’-diaminobenzidine 和2,2-bis(4-carboxyphenyl)-hexafluoropropane兩種單體合成分子結構中帶有含氟基團的非晶質、有機溶劑可溶之聚苯咪唑(Polybenzimidazole,PBI)。5 wt%的熱重損失溫度為520 ℃。由甲醇滲透率實驗中發現,PBI抵擋甲醇滲透的能力明顯較Nafion® 強。PBI質子導電率會隨著溫度及膜材含酸量的增加而上升,此PBI膜材可在高溫下(~160 ℃)展現較Nafion® 117優異的質子導電率。
    本論文研究的第二部份是由含氟PBI與有機改質之montmorillonite (modified montmorillonite,m-MMT)進行混摻,製備PBI/m-MMT奈米複合材料。其複合材薄膜經由X-ray繞射分析與穿透式電子顯微鏡(TEM)之觀察顯示,m-MMT能以奈米脫層型均勻分散在PBI基材中。PBI的機械性質與抗甲醇滲透能力隨著黏土的添加有顯著的改善效果。且當PBI含浸磷酸時,m-MMT可以有效抑制磷酸對膜材所造成的可塑化效應。然而,當PBI含浸磷酸後,m-MMT會略微降低其膜材之導電率。
    本論文研究的第三部份是由含氟PBI與silica前驅物tetraethyl orthosilicate (TEOS)混摻,其中並添加bonding agent,經由溶膠-凝膠法(sol-gel)製備PBI/silica奈米複合材薄膜。Bonding agent的添加可強化有機高分子與無機物之間的交互作用力。由穿透式電子顯微鏡(TEM)分析可看出奈米silica粒子均勻分散在高分子基材中。此PBI的機械性質與抗甲醇滲透能力皆能藉由奈米silica的添加而大幅的改善。含浸磷酸後的PBI/silica奈米複合材薄膜其導電率略低於酸化後的PBI薄膜。
    本論文研究的第四部份是由含氟PBI與Imidazole (Im) 混摻,製備PBI/Im複合膜。其複合膜在160 ℃開始會有熱裂解的現象產生。PBI質子導電率會隨著溫度及Im含量的增加而上升。然而,PBI機械性質與抗甲醇滲透的能力會因為Im的添加而有所下降。

    First, an amorphous, organosoluble fluorine-containing polybenzimidazole (PBI) was synthesized from 3,3’-diaminobenzidine and 2,2-bis(4-carboxyphenyl)-hexafluoropropane. The 5 % weight loss temperature of the polymer is at 520 oC. In the methanol permeability measurement, the PBI membranes showed a lot better methanol barrier ability than the Nafion® membrane. The proton conductivity of the acid-doped PBI membranes increased with increasing temperatures and doping level of phosphoric acid in the polymer. The PBI membranes show higher proton conductivity than Nafion® 117 membrane at high temperature(~160 ℃).
    Second, PBI/montmorillonite(MMT) nanocomposite membranes were prepared from fluorine-containing PBI with an organically modified MMT(m-MMT). Both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses showed that the m-MMT was well dispersed in the PBI matrix on a nanometer scale. The mechanical properties and the methanol barrier ability of the PBI films were significantly improved by the addition of m-MMT. The m-MMT in the phosphoric acid doped PBI could effectively inhibit the plasticizing effect of the phosphoric acid. The conductivity of the acid-doped PBI/m-MMT nanocomposites was slight lower than the acid-doped pure PBI.
    Third, PBI/silica nanocomposite membranes were prepared via sol-gel process from fluorine-containing PBI copolymer with tetraethyl orthosilicate (TEOS) precursor and a bonding agent. The introduction of the bonding agent results in the reinforcing interfacial interaction between PBI chains and silica nanoparticles. Transmission electron microscopy (TEM) analyses showed that the silica particles were well dispersed in the PBI matrix on a nanometer scale. The mechanical properties and the methanol barrier ability of the PBI films were improved by the addition of silica. The conductivities of the acid-doped PBI/silica nanocomposites were slightly lower than the acid-doped pure PBI.
    Fourth, PBI/imidazole(Im) hybrid membranes were prepared from fluorine-containing PBI with Im. The thermal decomposition of the PBI/Im hybrid membranes occurred at about 160 oC. The conductivities of the acid doped PBI/Im hybrid membranes increased with both the temperatures and the Im content. The addition of Im could reduce the mechanical properties and methanol barrier ability of the PBI membranes.

    總目錄 摘要……………………………………………………………………Ⅰ Abstract……………………………………………………………..Ⅲ 誌謝……………………………………………………………………Ⅴ 總目錄……………………………………………………………….ⅤⅠ 圖目錄……………………………………………………………….ⅩⅢ 表目錄……………………………………………………………….ⅩⅨ Scheme目錄……………………………………………………….ⅩⅩⅠ 第一章 緒論……………………………………………………………1 1-1前言…………………………………………………………………1 1-2研究動機與目的……………………………………………………2 第二章 文獻回顧與原理………………………………………………5 2-1 PEMFC之簡介………………………………………………………5 2-1-1 PEMFC之操作原理…………………………………………....5 2-1-2 PEMFC電極觸媒之作用……………………………………....6 2-2質子交換膜之簡介…………………………………………………7 2-3 PBI之介紹…………………………………………………………9 2-3-1 Polybenzazoles之簡介……………………………………….9 2-3-2 PBI之合成…………………………………………………...11 2-3-3 PBI之種類…………………………………………………...14 2-3-4 PBI之應用…………………………………………………...15 2-4 PBI摻雜磷酸之質子傳導機制………………………………….16 2-5 有機/無機奈米複合材料……………………………………….24 2-5-1有機/無機奈米複合材之簡介………………………………..24 2-5-2 有機/無機奈米複合材之製備方法………………………...25 2-5-3 有機/無機奈米複合材之特性……………………………...26 2-6 Montmorillonite(MMT)之簡介…………………………………26 2-6-1 MMT之構造……………………………………………….....26 2-6-2 MMT之有機化改質……………………………………….....30 2-6-3高分子/MMT奈米複合材料之型態……………………….....30 2-7 溶膠-凝膠法(Sol-gel) ……………………………………….32 2-7-1 溶膠-凝膠法之簡介………………………………………...32 2-7-2 溶膠-凝膠法之反應條件…………………………………...33 (1) PH值…………………………………………………..........33 (2) 溫度…………………………………………………..........34 (3) 水……………………………………………………..........34 2-7-3 溶膠-凝膠法之特性與型式………………………………...35 第三章 實驗方法與步驟……………………………………………..36 3-1實驗材料……………………………………………………………36 3-2實驗儀器……………………………………………………………37 3-3實驗步驟……………………………………………………………38 3-3-1 含氟PBI之合成與薄膜製備………………………………....38 (1) PBI合成………………………………………………..........38 (2) PBI薄膜製備…………………………………………..........39 3-3-2 含氟PBI/MMT複材薄膜之合成與製備…………………......40 (1) MMT之有機改質……………………………………............40 (2) PBI/m-MMT複材薄膜製備…………………………............40 3-3-3 含氟PBI/SiO2複材薄膜之合成與製備……………………...41 (1) PBI共聚合物之合成…………………………………..........41 (2) PBI/SiO2複材薄膜製備……………………………….........42 3-3-4 含氟PBI/Im複合膜之合成與製備……………………….....43 3-3-5 PBI薄膜酸質子化之製備…………………………………....44 3-4 儀器分析原理與方法…………………………………………….45 3-4-1 固有黏度(Inherent viscosity)測定…………………….45 3-4-2 傅利葉轉換紅外線光譜分析(FTIR) ……………………....45 3-4-3核磁共振光譜分析(NMR) …………………………………....46 3-4-4 X光繞射分析(XRD) ………………………………………....46 3-4-5穿透式電子顯微鏡分析(TEM) ……………………………....47 3-4-6熱重損失分析(TGA) ………………………………………....47 3-4-7熱差掃瞄分析(DSC) ………………………………………....47 3-4-8熱機械分析(TMA) …………………………………………....48 3-4-9動態熱機械分析(DTMA) ………………………………….....48 3-4-10機械性質分析…………………………………………….....49 3-4-11甲醇滲透分析…………………………………………….....50 3-4-12交流阻抗分析(AC impedance) ……………………………..51 3-4-13 質子導電率分析…………………………………………....54 第四章 結果與討論……………………………………………………55 4-1 含氟PBI合成及性質之研究………………………………………55 4-1-1 PBI合成結構之鑑定………………………………………....56 (1) PBI固有黏度測定………………………………………........56 (2) 傅利葉轉換紅外線光譜分析(FTIR) …………………........56 (3) 核磁共振光譜分析(NMR) …………………………….........57 4-1-2 PBI溶解度測試……………………………………………....58 4-1-3 PBI之X光繞射分析(XRD) …………………………………...58 4-1-4 PBI之熱性質分析…………………………………………....59 (1) 熱重損失分析(TGA) ………………………………….........59 (2) 熱差掃瞄分析(DSC) ………………………………….........60 4-1-5 PBI之機械性質分析………………………………………....60 4-1-6 PBI之甲醇滲透分析………………………………………....61 4-1-7 PBI之質子導電率分析……………………………………....62 4-2 含氟PBI/montmorillonite奈米複合材料合成及性質之研究…70 4-2-1 MMT改質之X光繞射分析(XRD) ………………………….....70 4-2-2 PBI/m-MMT奈米複材薄膜之X光繞射分析(XRD) ……….....71 4-2-3 PBI/m-MMT奈米複材薄膜之穿透式電子顯微鏡分析…......72 4-2-4 PBI/m-MMT奈米複材薄膜之熱性質分析………………......72 (1) 熱重損失分析(TGA) ………………………………….........72 (2) 熱機械分析(TMA) …………………………………….........73 (3) 動態熱機械分析(DTMA) ……………………………..........74 4-2-5 PBI/m-MMT奈米複材薄膜之機械性質分析……………......75 4-2-6 PBI/m-MMT奈米複材薄膜之甲醇滲透分析……………......77 4-2-7 PBI/m-MMT奈米複材薄膜之質子導電率分析…………......78 4-3 含氟PBI/SiO2奈米複合材料合成及性質之研究……………….90 4-3-1 PBI合成結構之鑑定………………………………………....91 (1) PBI固有黏度測定………………………………………........91 (2) 傅利葉轉換紅外線光譜分析(FTIR) …………………........92 (3) 核磁共振光譜分析(NMR) …………………………….........93 4-3-2 PBI溶解度測試……………………………………………....93 4-3-3 PBI之X光繞射分析(XRD) …………………………………...94 4-3-4 觸媒對於sol-gel反應之影響………………………………..94 4-3-5 PBI/SiO2奈米複材薄膜之穿透式電子顯微鏡分析………...95 4-3-6 PBI/ SiO2奈米複材薄膜之熱性質分析……………………..96 (1) 熱重損失分析(TGA) ………………………………….........96 (2) 熱機械分析(TMA) …………………………………….........98 (3) 動態熱機械分析(DTMA) ……………………………..........99 4-3-7 PBI/SiO2奈米複材薄膜之機械性質分析…………………...99 4-3-8 PBI/SiO2奈米複材薄膜之甲醇滲透分析…………………..102 4-3-9 PBI/SiO2奈米複材薄膜之質子導電率分析………………..103 4-4 含氟PBI/imidazole複合膜材合成及性質之研究…………….119 4-4-1 PBI/Im複合膜材之傅利葉轉換紅外線光譜分析(FTIR) ...119 4-4-2 PBI/Im複合膜材之熱重損失分析(TGA) ………………....120 4-4-3 PBI/Im複合膜材之機械性質分析………………………....121 4-4-4 PBI/Im複合膜材之甲醇滲透分析………………………....122 4-4-5 PBI/Im複合膜材之質子導電率分析……………………....122 第五章 結論………………………………………………………….130 參考文獻………………………………………………………………132 自述……………………………………………………………………145 圖目錄 Fig. 2-1. Schematic diagram of PEMFC……………………………6 Fig. 2-2. A simple case for Grotthuss mechanism……………19 Fig. 2-3. Proton conduction in imidazole through Grotthuss mechanism………………………………………………………………19 Fig. 2-4. Protons hoping across an array of molecules. …20 Fig. 2-5. Imidazole and water exhibit similar behavior toward protons...........................................21 Fig. 2-6. Chemical structure of (a)PBI (b)H3PO4 protonated PBI (c)proton transfer along acid-PBI-acid (d)proton transfer along acid-acid (e)proton transfer along acid-H2O. ………………………………………………................23 Fig. 2-7. The Structure of montmorillonite(MMT). …………29 Fig. 2-8. Scheme of different types of composites (a) conventional composites (b) intercalated nanocomposite (c) exfoliated nanocomposites. ………………………………………31 Fig. 2-9. Scheme of relative reaction kinetics of alkoxysilanes versus pH. …………………………………………34 Fig. 3-1. Schematic diagram of methanol permeability measurement cell. ………………………………………………….50 Fig. 3-2. (a) Typical equivalent circuit for an electrochemical system (b) Nyquist plot for the equivalent circuit. …………………………………......................52 Fig. 3-3. (a) Equivalent circuit for an electrochemical system in which Warburg impedance is important (b) Nyquist plot for the equivalent circuit. ………………………………53 Fig. 3-4. Schematic diagram of proton conductivity measurement cell.........................................54 Fig. 4-1. IR Spectra of PBI membranes doped with different amounts of phosphoric acid. …………………………………….64 Fig. 4-2. 1H-NMR spectrum of PBI. ……………………………65 Fig. 4-3. XRD pattern of fluorine-containing PBI. ……….66 Fig. 4-4. TGA thermograms of PBI membranes doped with different amount of phosphoric acid in air. ……………….67 Fig. 4-5. DSC of fluorine-containing PBI. ………………….68 Fig. 4-6. Proton conductivity of PBI membranes doped with different amount of phosphoric acid at different temperatures under anhydrous condition. ……………………69 Fig. 4-7. XRD patterns of MMT and m-MMT. ………………….79 Fig. 4-8. XRD patterns of PBI/m-MMT nanocomposite membranes….............................................80 Fig. 4-9. TEM micrographs of PBI/3 wt% m-MMT nanocomposote (a), PBI/5 wt% m-MMT nanocomposite (b) and PBI/7 wt% m-MMT nanocomposite (c). ……………………………………………….81 Fig. 4-10. TGA thermograms of PBI/m-MMT nanocomposite membranes in air. …………………………………………………82 Fig. 4-11. In-plane coefficients of thermal expansion (CTEs) of PBI/m-MMT nanocomposite membranes measured in the temperature range of 100-250 oC. ……………………….83 Fig. 4-12. Storage modulus (a) and loss modulus (b) of PBI/m-MMT nanocomposite membranes. ………………………….84 Fig. 4-13. Tan δ of PBI/m-MMT nanocomposite membranes. ..85 Fig. 4-14. Methanol permeability of PBI/m-MMT nanocomposite membranes in 6 wt% methanol aqueous solution at room temperature………………………………………………..86 Fig. 4-15. Methanol permeability of PBI/m-MMT nanocomposite membranes doped with phosphoric acid (PBI-3.0H3PO4) in 6 wt% methanol aqueous solution at room temperature……………....................................87 Fig. 4-16. Proton conductivity (σ) of PBI/m-MMT nanocomposite membranes doped with different amounts of phosphoric acid at 160 oC under anhydrous condition. ……88 Fig. 4-17. The proton conductivity/methanol permeability ratio of PBI/m-MMT nanocomposite membranes………………….89 Fig. 4-18. IR spectra of PBI10OH and that with bonding agent (a), PBI30OH and that with bonding agent (b). ……105 Fig. 4-19. 1H NMR spectra of PBI10OH (a) and PBI30OH(b).....................................................106 Fig. 4-20. XRD patterns of PBI10OH and PBI30OH. …………107 Fig. 4-21. TEM micrographs and particle size distributions of PBI10OH/10 wt% silica nanocomposite (a) and PBI10OH/15 wt% silica nanocomposite (b). ……………………………….108 Fig. 4-22. TEM micrographs and particle size distributions of PBI30OH/10 wt% silica nanocomposite (a) and PBI30OH/15 wt% silica nanocomposite (b). ………………………………..109 Fig. 4-23. EDX spectrum of PBI30OH/15 wt% silica nanocomposite...........................................110 Fig. 4-24. TGA thermograms of PBI10OH/silica nanocomposites (a) and PBI30OH/silica nanocomposites (b) in air. …………………………............................111 Fig. 4-25. Storage moduli of PBI10OH/silica nanocomposites (a) and PBI30OH/silica nanocomposites (b). ……………….112 Fig. 4-26. Loss moduli of PBI10OH/silica nanocomposites (a) and PBI30OH/silica nanocomposites (b). ……………….113 Fig. 4-27. Tan δ of PBI10OH/silica nanocomposites (a) and PBI30OH/silica nanocomposites (b). ………………………….114 Fig. 4-28. Methanol permeability of PBI10OH/silica nanocomposites and PBI30OH/silica nanocomposites. (in 6 wt% methanol aqueous solution at room temperature) …….115 Fig. 4-29. Methanol permeability of PBI10OH/silica nanocomposites and PBI30OH/silica nanocomposites doped with phosphoric acid. (in 6 wt% methanol aqueous solution at room temperature) ……………………...................116 Fig. 4-30. Proton conductivity (σ) of PBI30OH/silica nanocomposite membranes doped with different amounts of phosphoric acid at 160 oC under anhydrous condition. ….117 Fig. 4-31. The proton conductivity/methanol permeability ratio of PBI30OH/silica nanocomposite membranes………….118 Fig. 4-32. IR spectra of PBI/Im hybrid membranes. ………124 Fig. 4-33. IR spectra of PBI/Im hybrid membranes doped with phosphoric acid. ……………………………………………125 Fig. 4-34. TGA thermograms of PBI/Im hybrid membranes in air…….................................................126 Fig. 4-35. Photographs of PBI/Im hybrid membranes. …….127 Fig. 4-36. Methanol permeability of PBI/Im hybrid membranes in 6 wt% methanol aqueous solution at room temperature. ……………………...........................128 Fig. 4-37. Proton conductivities (σ) of PBI/Im hybrid membranes doped with phosphoric acid at different temperatures under anhydrous condition. ………………….129 表目錄 Table 4-1. Solubility of PBI polymer in room temperature.58 Table 4-2. Mechanical properties of PBI membranes…………61 Table 4-3. Methanol permeability of PBI membranes…………62 Table 4-4. Mechanical properties of the PBI/m-MMT nanocomposite membranes and phosphoric acid doped PBI/m-MMT nanocomposite membranes………………………………………76 Table 4-5. Solubility of the PBI copolymers…………………94 Table 4-6. Silica conversion in different amounts of catalyst (Et2NH).........................................95 Table 4-7. Thermal properties of the PBI copolymers………98 Table 4-8. Mechanical properties of PBI10OH/silica nanocomposite membranes and phosphoric acid doped PBI10OH/silica nanocomposite membranes………………………101 Table 4-9. Mechanical properties of PBI30OH/silica nanocomposite membranes and phosphoric acid doped PBI30OH/silica nanocomposite membranes………………………102 Table 4-10. Doping level of phosphoric acid in PBI/Im hybrid membranes (acid immersion 48h) …………………….120 Table 4-11. Mechanical properties of PBI/Im hybrid membranes...............................................121 Table 4-12. Proton conductivities (σ) of PBI/Im hybrid membranes doped with phosphoric acid at 90 oC and 90 % relative humidity…………….............................123 Scheme目錄 Scheme 2-1. The chemical structure of Nafion®.………………8 Scheme 2-2. The chemical structure of polybenzazoles. ……9 Scheme 2-3. The reaction mechanism of polybenzazoles. ….10 Scheme 2-4. The chemical structure of Celazole®.………….16 Scheme 3-1. Synthesis of the fluorine-containing PBI. ….39 Scheme 3-2. Synthesis of fluorine-containing PBI copolymer................................................42 Scheme 3-3. Synthesis of PBI/silica hybrid material. ……43 Scheme 3-4. The chemical structure of imidazole (Im). ….44

    1.X.H. Wang, Y. Chen, H.G. Pan, R.G. Xu, S.Q. Li, L.X. Chen, C.P. Chen, Q.D. Wang, J. Alloys Compd. 293 (1999) 833.
    2.F. Alcaide, E. Brillas, P.L. Cabot, J. Electrochem. Soc. 145 (1998) 3444.
    3.N.A. Popovich, R. Govind, J. Power Sources 112 (2002) 36.
    4.K. Yamashita, T. Taniquchi, J. Electrochem. Soc. 145 (1998) 45.
    5.R.H. Song, D.R. Shin, S. Dheenadayalan, J. Power Sources 107 (2002) 98.
    6.K. Janowitz, M. Kah, H. Wendt, Electrochim Acta 45 (1999) 1025.
    7.B. Fang, H. Chen, J. Electroanal. Chem. 501 (2001) 128.
    8.S.F. Corbin, X. Qiao, J. Am. Ceram. Soc. 86 (2003) 401.
    9.R.J. Gorte, S. Park, J.M. Vohs, C.H. Wang, Adv. Mater. 12 (2000) 1465.
    10.H.F. Oetjen, V.M. Schmidt, U. Stimming, F. Trila, J. Electrochem. Soc. 143 (1996) 3838.
    11.Y. Bultel, P. Ozil, R. Durand, J. Appl. Electrochem. 30 (2000) 1369.
    12.G. Inzelt, M. Pineri, J.W. Schultze, M.A. Vorotyntsev, Electrochim. Acta 45 (2000) 2403.
    13.M. Rikukawa, K. Sanui, Prog. Polym. Sci. 25 (2000) 1463.
    14.L. Jorisen, V. Gogel, J. Kerres, J. Garche, J. Power Sources 105 (2002) 267.
    15.D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, J. Power Sources 118 (2003) 205.
    16.J.T. Wang, J.S. Wainright, R.F. Savinell, M. Litt, J. Appl. Electrochem. 26 (1996) 751.
    17.Z.G. Shao, P. Joghee, I.M. Hsing, J. Membr. Sci. 229 (2004) 43.
    18.V.V. Binsu, R.K. Nagarale, V.K. Shahi, J. Mater. Chem. 15 (2005) 4823.
    19.P. Staiti, M. Minutoli, J. Power Sources 94 (2001) 9.
    20.J.A. Asensio, S. Borros, P. Gomez-Romero, J. Polym. Sci. Part A Polym. Chem. 40 (2002) 3703.
    21.L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E.W. Choe, L.S. Ramanathan, S. Yu, B.C. Benicewicz, Fuel Cells 5 (2005) 287.
    22.H.J. Kim, S.J. An, J.Y. Kim, J.K. Moon, S.Y. Cho, Y.C. Eun, H.K. Yoon, Y. Park, H.J. Kweon, E.M. Shin, Macromol. Rapid Commun. 25 (2004) 1410.
    23.M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, N. Ogata, Electrochim. Acta 45 (2000) 1395.
    24.J.M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Solid State Ionics 147 (2002) 189.
    25.薛康琳,化學 62 (2004) 149.
    26.R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt, C. Rogers, J. Electrochem. Soc. 141 (1994) L46.
    27.G. Alberti, M. Casciola, L. Massinelli, B. Bauer, J. Membr. Sci. 185 (2001) 73.
    28.C. Yang, P. Costamagna, S. Srinivasan, J. Benziger, A.B. Bocarsly, J. Power Sources 103 (2001) 1.
    29.P. Costamagna, C. Yang, A.B. Bocarsly, S. Srinivasan, Electrochim. Acta 47 (2002) 1023.
    30.B. Smitha, S. Sridhar, A.A. Khan, J. Membr. Sci. 259 (2005) 10.
    31.R.F. Hutzler,D.L. Meurer, K. Kimura, P.E. Cassidy, High Perform. Polym. 4 (1992) 161.
    32.陳志成,中山大學材料科學研究所碩士論文 (2000).
    33.http://www.chem.rochester.edu/~chem424/bimid1.htm
    34.V.V. Korshak, G.V. Kazakova, A.L. Rusanov, Polym. Sci. U.S.S.R. 1 (1989) 4.
    35.H. Vogel, C.S. Marvel, J. Polym. Sci. 50 (1961) 511.
    36.M. A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Chem. Rev. 104 (2004) 4587.
    37.P. Jannasch, Fuel Cells 5 (2005) 248.
    38.G.B. Rossi, G. Beaucage, T.D. Dang, R.A. Vaia, Nano Lett. 2 (2002) 319.
    39.J.M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Solid State Ionics 147 (2002) 189.
    40.P.G. Romero, J.A. Asensio, S. Borros, Electrochim. Acta 50 (2005) 4715.
    41.Y. Yamazaki, M.Y. Jang, T. Taniyama, Sci. Technol. Adv. Mater. 5 (2004) 455.
    42.P. Staiti, Mater Lett 47 (2001) 241.
    43.J.S. Wainright, J.T. Wang, D. Weng, R.F. Savinell, M. Litt, J. Electrochem. Soc. 142 (1995) L121.
    44.B.S. Pivovar, Y. Wang, E.L. Cussler, J. Membr. Sci. 154 (1999) 155.
    45.Y.L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, J. Electrochem. Soc. 151 (2004) 8.
    46.H.T. Pu, G.H. Liu, Polym. Adv. Technol. 15 (2004) 726.
    47.R. Bouchet, S. Miller, M. Duclot, J.L. Souquet, Solid State Ionics 145 (2001) 69.
    48.B.S. Pivovar, Polymer 47 (2006) 4194.
    49.Z. Zhou, R. Liu, J. Wang, S. Li, M. Liu, J.L. Bredas, J. Phys. Chem. A, 110 (2006) 2323
    50.I. Alkorta, J. Elguero, Org. Biomol. Chem. 4 (2006) 3096.
    51.M.F.H. Schuster, W.H. Meyer, Annu. Rev. Mater. Res. 33 (2003) 233.
    52.X. Glipa, B. bonnet, B. Mula, D.J. Jones, J. Roziere, J. Mater. Chem. 9 (1999) 3045.
    53.R. Bouchet, E. Siebert, Solid State Ionics 118 (1999) 287.
    54.A. Usuki, M. Kawasumi, Y. Kojima, J. Mater. Res. 7 (1991) 856.
    55.P. B. Messersmith, E. P. Giannelis, J. Polym. Sci. Part A: polymer. Chem. 33 (1995) 1047.
    56.S.D. Burnside, E.P. Giannelis, Chem. Mater. 7 (1995) 1597.
    57.H. Ishida, S. Campbell, J. Blackwell, Chem. Mater. 12 (2000) 1260.
    58.樂文禮,成功大學化學工程研究所碩士論文 (2002).
    59.A.B. Morgan, J.W. Gilman, C.L. Jackson, Macromolecules 34 (2001) 2735.
    60.H.L. Tyan, K.H. Wei, T.E. Hsieh, J. Polym. Sci. Patr B 38 (2000) 2873.
    61.A. Gu, F.C. Chang, J. Appl. Polym. Sci. 79 (2001) 289.
    62.T. Agag, T. Koga, T. Takeichi, Polymer 42 (2001) 3399.
    63.K.A. Carrado, L. Xu, Chem. Mater. 10 (1998) 1440.
    64.廖建勛,工業材料125 (1997) 108.
    65.D.M. Delozier, R.A. Orwoll, J.F. Cahoon, Polymer 43 (2002) 813.
    66.Z.M. Liang, J. Yin, H.J. Xu, Polymer 44 (2003) 1391.
    67.J.H. Chang, M.P. Kwang, D. Cho, Polym. Eng. Sci. 41 (2001) 1514.
    68.S.H. Hsiao, G.S. Liou, L.M. Chang, J. Appl. Polym. Sci. 80 (2001) 2067.
    69.A.Gu, S.W. Kuo, F.C. Chang, J. Appl. Polym. Sci. 79 (2001) 1902.
    70.蘇佳琪,成功大學資源工程研究所碩士論文 (2002).
    71.趙杏媛、張有瑜,黏土礦物與黏土礦物分析,海洋出版社 (1990).
    72.劉慧玲,成功大學資源工程研究所碩士論文 (2001).
    73.M. Alexandre, P. Dubois, Mater. Sci. Eng. R. Rep. 28 (2000) 1.
    74.H. Dislich, Glastech. Ber. 44 (1971) 1.
    75.王鈴雅,成功大學化學工程學系碩士論文 (2002).
    76.周俊諺,成功大學化學系碩士論文 (2004).
    77.I. Matsuyama, S. Satoh, M. Katsumoto, K. Susa, J. Non. Cryst. Solids 135 (1991) 22.
    78.A.M. Siouffi, J. Chromatogr. A 1000 (2003) 801.
    79.陳暉、陳姿秀,化工技術 8 (2000) 166.
    80.J.A. Asensio, S. Borros, P.G. Romero, Electrochem. Commun. 5 (2003) 967.
    81.Q.F. Li, C. Pan, J.O. Jensen, P. Noye, N.J. Bjerrum, Chem. Mater. 19 (2007) 350.
    82.J.H. Kim, H.J. Kim, T.H. Lim, H.I. Lee, J. Power Sources 170 (2007) 275.
    83.R.H. He, Q.F. Li, G. Xiao, N.J. Bjerrum, J. Membr. Sci. 226 (2003) 169.
    84.D.A. Skoog, J.J. Leary, Saunders College Publishing US (1992) 252.
    85.V. Tricoli, J. Electrochem. Soc. 145 (1998) 3798.
    86.H.Y. Chang, C.W. Lin, J. Membr. Sci. 218 (2003) 295.
    87.D. Rivin, C.E. Kendrick, P.W. Gibson, N.S. Schneider, Polymer 42 (2001) 148.
    88.H.T. Pu, Q.H. Liu, G.H. Liu, J. Membr. Sci. 241 (2004) 169.
    89.P. Mukoma, B.R. Jooste, H.C.M. Vosloo, J. Membr. Sci. 243 (2004) 293.
    90.黃雅鈴,中央大學化學研究所碩士論文 (2001)。
    91.陳盈助,成功大學化學工程研究所碩士論文 (2002)。
    92.洪偉銘,朝陽科技大學應用化學系碩士論文 (2004)。
    93.F.L. Hedberg, C.S. Marvel, J. Polym. Sci. Polym. Chem. Ed. 12 (1974) 1823.
    94.M.Y. Jang, Y. Yamazaki, Solid State Ionics 167 (2004) 107.
    95.H.T Pu, Q.H. Liu, L. Qiao, Z.L. Yang, Polym. Eng. Sci. 45 (2005) 1395.
    96.K.Y. Wang, T.S. Chung, J. Membr. Sci. 281 (2006) 307.
    97.H. Sun, N. Venkatasubramanian, M.D. Houtz, J.E. Mark, S.C. Tan, F.E. Arnold, C.Y.C. Lee, Colloid Polym. Sci. 282 (2004) 502.
    98.Y. Imai, K. Uno, Y. Iwakura, Macromol. Chem. 83 (1965) 179.
    99.J.A. Asensio, S. Borros, P.G. Romero, J. Membr. Sci. 241 (2004) 89.
    100.M. Litt, R. Ameri, Y. Wang, R. Savinell, J. Wainwright, Mater. Res. Soc. Symp. Proc. 548 (1999) 313.
    101.P. Musto, F.E. Karasz, W. MacKnight, J. Polym. 34 (1993) 2934.
    102.S.H. Hsiao, Y.H. Chang, Eur. Polym. J. 40 (2004) 1749.
    103.K. Uno, K. Niume, Y. Iwata, F. Toda, Y. Iwakura, J Polym Sci Polym Chem Ed 15 (1977) 1309.
    104.T. Sugama, Mater. Lett. 58 (2004) 1307.
    105.K.Y. Wang, Y. Xiao, T.S. Chung, Chem. Eng. Sci. 61 (2006) 5807.
    106.Y. Wang, S.H. Goh, T.S. Chung, Polymer 48 (2007) 2901.
    107.M. Berrada, F. Carriere, Y. Abboud, A. Abourriche, A. Benamara, N. Lajrhed, M. Kabbaj, M. Berrada, J. Mater. Chem. 12 (2002) 3551.
    108.D.J. Jones, J. Roziere, J. Membr. Sci. 185 (2004) 41.
    109.Q.F. Li, R.H. He, R.W. berg, H.A. Hjuler, N.J. Bjerrum, Solid State Ionics 168 (2004) 177.
    110.S.B. Qing, W. Huang, D.Y Yan, Eur. Polym. J. 41 (2005) 1589.
    111.H.J. Xu, K.C. Chen, X.X. Guo, J.H. Fang, J. Yin, Polymer 48 (2007) 5556.
    112.A. Sannigrahi, D. Arunbabu, R.M. Sankar, T. Jana, J. Phys. Chem. B 111 (2007) 12124.
    113.H.H. Song, S. K. Hong, Polymer 38 (1997) 4241.
    114.J. Cho, J. Blackwell, S.N. Chvalun, M. Litt, Y. Wang, J. Polym. Sci. Part B 42 (2004) 2576.
    115.J.A. Asensio, S. Borros, P.G. Romero, J. Electrochem. Soc. 151 (2004) A304.
    116.A. Gu, S.W. Kuo, F.C. Chang, J. Appl. Polym. Sci. 79 (2001) 1902.
    117.A. Sasaki, J.L. White, J. Appl. Polym. Sci. 91 (2004) 1951.
    118.R.H. Vora, P.K. Pallathadka, S.H. Goh, T.S. Chung, Y.X. Lim, T.K. Bang, Macromol. Mater. Eng. 288 (2003) 337.
    119.M.O. Abdalla, D. Dean, S. Campbell, Polymer 43 (2002) 5887.
    120.D. Homminga, B. Goderis, I. Dolbnya, H. Reynaers, G. Groeninckx, Polymer 46 (2005) 11359.
    121.K. Yano, A. Usuki, A. Okada, T. Kurauchi, O. Kamigaito, J. Polym. Sci. Part A Polym. Chem. 31 (1993) 2493.
    122.H.L. Tyan, Y.C. Liu, K.H. Wei, Chem. Mater. 11 (1999) 1942.
    123.J.H. Chang, J.H. Park, G.G. Park, C.S. Kim, O.O. Park, J. Power Sources 124 (2003) 18.
    124.G.W. Zhang, Z.T. Zhou, J. Membr. Sci. 261 (2005) 107.
    125.J.M. Thomassin, C. Pagnoulle, G. Caldarella, A. Germain, R. Jerome, J. Membr. Sci. 270 (2006) 50.
    126.M.K. Song, S.B. Park, Y.T. Kim, K.H. Kim, S.K. Min, H.W. Rhee, Electrochim. Acta 50 (2004) 639.
    127.R.F. Silva, S. Passerini, A. Pozio, Electrochim. Acta 50 (2005) 2639.
    128.C.H. Rhee, H.K. Kim, H. Chang, J.S. Lee, Chem. Mater. 17 (2005) 1691.
    129.D.W. Kim, H.S. Choi, C.J. Lee, A. Blumstein, Y.K. Kang, Electrochim. Acta 50 (2004) 659.
    130.J. Zhang, B.K. Zhu, H.J. Chu, Y.Y. Xu, J. Appl. Polym. Sci. 97 (2005) 20.
    131.Z. Ahmad, J.E. Mark, Chem. Mater. 13 (2001) 3320.
    132.R.K. Nagarale, G.S. Gohil, V.K. Shahi, R. Rangarajan, Macromolecules 37 (2004) 10023.
    133.M. Aparicio, Y. Castro, A. Duran, Solid State Ionics 176 (2005) 333.
    134.O. Nishikawa, T. Sugimoto, S. Nomura, K. Doyama, K. Miyatake, H. Uchida, M. Watanabe, Electrochim. Acta 50 (2004) 667.
    135.C.N. Li, G.Q. Sun, S.Z. Ren, J. Liu, Q. Wang, Z.M. Wu, H. Sun, W. Jin, J. Membr. Sci. 272 (2006) 50.
    136.D.S. Kim, B.J. Liu, M D. Guiver, Polymer 47 (2006) 7871.
    137.R.C. Jiang, H.R. Kunz, J.M. Fenton, J. Membr. Sci. 272 (2006) 116.
    138.J. Premachandra, C. Kumudinie, W. Zhao, J.E. Mark, T.D. Dang, J.P. Chen, F.E. Arnold, J. Sol Gel Sci. Technol. 7 (1996) 163.
    139.W.J. Lin, W.C. Chen, Polym. Int. 53 (2004) 1245.
    140.B.K. Chen, T.M. Chiu, S.Y. Tsay, J. Appl. Polym. Sci. 94 (2004) 382.
    141.J.P. Chen, F.E. Arnold, Polym. Mater. Sci. Eng. Proc. ACS Div. Polym. Mater. Sci. Eng. 70 (1993) 301.
    142.Z.H. Huang, K.Y. Qiu, Polymer 38 (1997) 521.
    143.Y. Wei, D.L. Jin, C.C. Yang, G. Wei, J. Sol Gel Sci. Technol. 7 (1996) 191.
    144.Z. Ahmad, S. Wang, J.E. Mark, J.P. Chen, F.E. Arnold, Polym. Mater. Sci. Eng. Proc. ACS Div. Polym. Mater. Sci. Eng. 70 (1993) 303.
    145.P. Musto, M. Abbate, M. Lavorgna, G. Ragosta, G. Scarinzi, Polymer 47 (2006) 6172.
    146.L.H. Wang, Y. Tian, H.Y. Ding, J.D. Li, Eur. Polym. J. 42 (2006) 2921.
    147.J.J. Lin, X.D. Wang, Polymer 48 (2007) 318.
    148.K.D. Kreuer, A. Fuchs, M. Lse, M. Spaeth, J. Maier, Electrochim. Acta 43 (1998) 1281.
    149.J. Sun, L.R. Jordan, M. Forsyth, D.R. MacFarlane, Electrochim. Acta 46 (2001) 1703.
    150.H.T. Pu, L.M. Tang, Polym. Int. 56 (2007) 121.
    151.A. Schechter, R.F. Savinell, Solid State Ionics 147 (2002) 181.
    152.S.W. Li, Z. Zhou, M.L. Liu, W. Li, J. Ukai, K. Hase, M. Nakanishi, Electrochim. Acta 51 (2006) 1351.
    153.M. Schuster, W.H. Meter, G. Wegner, H.G. Herz, M. Ise, M. Schuster, K.D. Kreuer, J. Maier, Solid State Ionics 145 (2001) 85.

    下載圖示 校內:2009-06-05公開
    校外:2018-06-05公開
    QR CODE