簡易檢索 / 詳目顯示

研究生: 侯昀萱
Hou, Yun-Hsuan
論文名稱: 氧化鎂及氧化釔添加對富鋇鈦酸鋇之結構與介電性質的影響
Structure and Dielectric Properties of Ba-rich BaTiO3 Doped with MgO and Y2O3
指導教授: 黃啓原
Huang, Chi-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: 鈦酸鋇殼-核結構介電常數
外文關鍵詞: barium titanate, core-shell structure, dielectric constant
相關次數: 點閱:71下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鈦酸鋇具有良好的介電性質,因此在工業上廣泛應用於被動元件、熱敏電阻器、溫度感測器等多種高容電子產品。為了使製成的電子元件能符合工業規格需求 (Y5V、X8R、X9R 等),通常在鈦酸鋇中加入添加物,進行離子置換以改變介電常數變化率隨溫度改變的特性。本研究以鈦酸鋇為基礎,選擇氧化釔 (1.0 mol% , 3.0 mol%) 及氧化鎂 (0.5 mol% , 1.0 mol%) 作為添加,瞭解釔離子及鎂離子進入 Ti-site 後對於顯微結構、晶體結構與介電性質之影響,並以獲得高緻密度且小晶粒之殼-核結構之陶瓷體為目的。
      實驗結果顯示,單一添加系統中,添加 3 mol% 氧化釔抑制燒結,令燒結溫度提高,添加氧化鎂促進燒結且提高陶瓷體之相對密度,並獲得較平坦的溫度-電容曲線 (TCC)。透過晶格計算得知,鎂離子進入 Ti-site 後,單位晶格的 a 軸伸長、c 軸縮短。當添加氧化釔則使 a 軸和 c 軸些微延長。在共添加系統中, 0.5Mg1Y 、 1Mg1Y 、0.5Mg3Y 和 1Mg3Y 樣品在 1300℃ 持溫 3 小時,獲得相對密度 90 % 以上的燒結體, 0.5Mg3Y 樣品的晶粒大小約在 1.0 μm - 2.0 μm 之間。

    Due to the great performance of dielectric properties, barium titanate was used in great number of high-K capacitor products, such as passive devices, thermistors, and temperature sensors. To make electric device achieve the industrial specifications (Y5V, X8R, X9R, etc), we usually added additives into the barium titanate proceeding ion exchange to adjust the dielectric constant with temperature. The core-shell structure was obtained by Y2O3 and MgO doped into Ba-rich BaTiO3-based material. In this study, we investigated the microstructure, crystal structure and dielectric properties.
    Doping 3 mol% Y2O3 can suppress its sintering shrinkage of BaTiO3 bulk. The addition MgO into BaTiO3 can enhance sintering shrinkage and acquire a flatter TCC curve. The tetragonality decreased as the amount of MgO increased.
    The ceramic densities of 0.5Mg1Y, 0.5Mg3Y, and 1Mg1Y specimens sintered at 1300oC/ 3h were more than 90%, and the grain sizes of 0.5Mg3Y were between 1.0 μm - 2.0 μm.

    第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 前人文獻回顧及理論基礎 3 2-1 鈦酸鋇晶體結構及性質 3 2-2 添加物對鈦酸鋇性質之影響 7 2-3 燒結理論 16 2-3-1 燒結基本原理及機構 16 2-3-2 液相燒結的原理 20 2-3-3晶粒成長的抑制 22 2-4 氧化物添加劑對鈦酸鋇燒結行為之影響 23 2-4-1 單一添加氧化釔對鈦酸鋇燒結之影響 23 2-4-2 單一添加氧化鎂對鈦酸鋇燒結之影響 24 2-5 氧化鎂和氧化釔共添加於鈦酸鋇系統之反應機制 25 2-6 Ba/Ti對於鈦酸鋇之影響 28 2-6-1 固溶範圍 28 2-6-2 缺陷化學式 28 2-6-3 Ba/Ti 比對於鐵電相轉換的影響 29 2-6-4 Ba/Ti 比對於微結構及介電性質的影響 33 第三章 實驗方法與實驗步驟 36 3-1 起始原料 36 3-2 實驗方法及實驗流程 36 3-2-1 粉末製備 37 3-2-2 粉末之熱差/熱重分析 38 3-2-3 陶瓷體製備及燒結收縮量測 43 3-3 材料分析 43 3-3-1 表面電位量測 43 3-3-2 X光陶瓷體繞射分析 43 3-3-3 晶格常數分析 44 3-3-4 掃描式電子顯微鏡 46 3-3-5 穿透式電子顯微鏡 46 3-3-6 陶瓷體之密度量測 46 3-4 性質分析 47 3-4-1 陶瓷體樣品準備與介電常數量測 47 3-4-2 溫度-電容曲線量測 48 第四章 結果與討論 49 4-1 起始粉末之熱差/熱重分析 49 4-2陶瓷體分析 53 4-2-1 燒結收縮量測 53 4-2-2 陶瓷體顯微結構之演變 59 4-3 陶瓷體之 X 光繞射分析 68 4-3-1 晶格常數計算 68 4-4 陶瓷體之介電常數與溫度-電容分析曲線 75 4-5 綜合討論 79 第五章 結論 85 參考文獻 86

    1. A. J. Moulson and J. M. Herbert, Electroceramics : Materials, Properties, and Applications, Chapman and Hall, New York, 1990.
    2. B. Jaffe, W. R. Cook, Jr. and H. Jaffe, Piezoelectric Ceramics, William R. Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, Ohio, U. S. A., 1971.
    3. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, John Wiley and Sons, New York, 1976.
    4. L. C. Dufour, C. Monty, and G. P. Ervas., Surface and Interfaces of Ceramic Materials, 521-533, Kuwer Academic, Bosten, 1989.
    5. R. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S.E. Park, “New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on Bi(Me)O3-PbTiO3 Ceramics,” Jpn. J. Appl. Phys., 40 [10], 5999-6002, 2001.
    6. Y. S. Jung, E. S. Na, U. Paik, J. Lee, and J. Kim, “A Study on the Phase Transition and Characteristics of Rare Earth Elements Doped BaTiO3,” Materials Research Bulletin 37, 1633-1640, 2002.
    7. K. Kobayashi, J. Nishikawa, T. Suzuki, and Y. Mizuno, “Microstructure Study of BaTiO3–Ho2O3–MgO–SiO2-Based Ceramics Using Convergent Beam Electron Diffraction Analysis,” Jpn. J. Appl. Phys., 48, 2009.
    8. H. Kishi, N. Kohzu, J. Sugino, H. Ohsato,Y. Iguchi, and T. Okuda, “The Effect of Rare-earth (La, Sm, Dy, Ho and Er) and Mg on the Microstructure in BaTiO3,” J. Euro. Ceram. Soc., 19, 1999, 1043-1046.
    9. J. Nishikawa, T. Hagiwara, K. Kobayashi, Y. Mizuno, and H. Kishi, “Effects of Microstructure on the Curie Temperature in BaTiO3–Ho2O3–MgO–SiO2 System,” Jpn. J. Appl. Phys., 46, 2007, 6999-7004.
    10. A. Kirianov, T. Hagiwara, H. Kishi, and H. Ohsato, “Effect of Ho/Mg Ratio on Formation of Core-shell Structure in BaTiO3 and on Dielectric Properties of BaTiO3 Ceramics,” Jpn. J. Appl. Phys., 41, 2002, 6934-6937.
    11. J. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho, and J. L. Baptista, “Incorporation of Yttrium in Barium Titanate Ceramics.” J. Am. Ceram. Soc., 82 [5], 1345-48, 1999.
    12. D. Makovec, Z. Samardzija, and M. Drofenik, “Solid Solubility of Holmium, Yttrium, and Dysprosium in BaTiO3,” J. Am. Ceram. Soc., 87 [7] 1324-1329, 2004.
    13. Y. H. Song, J. H. Hwang and Y. H. Han, “Effects of Y2O3 on Temperature Stability of Acceptor-Doped BaTiO3,” Jpn. J. of Appl. Phys., 44, 2005, 1310-1313.
    14. 14. M. H. Lin, H Y. Lu, “Site-Occupancy of Yttrium as a Dopant in BaO-Excess BaTiO3, ” Materials Science and Engineering A335, 2002, 101-108.
    15. J. H. Kim, S. H. Yoon, and Y. H. Han, “Effects of Y2O3 Addition on Electrical Conductivity and Dielectric Properties of Ba-excess BaTiO3,” J. Euro. Ceram. Soc., 2007, 1113-1116.
    16. W. C. Yang, C. T. Hu, I. N. Lin, “Effect of Y2O3/MgO Co-doping on the Electrical Properties of Base-Metal-Electroded BaTiO3 Materials,” J. Euro. Ceram. Soc., 24, 2004, 1479-1483.
    17. F. A. Kroger and H. J. Vink, “Solid State Physics.” eds. F. Seitz and D. Turnbull, Academic Press, New York, 1956.
    18. J. Jeong and Y. H. Han, “Effects of MgO-Doping on Electrical Properties and Microstructure of BaTiO3,” Jpn. J. Appl. Phys., 43, 2004, 5373-5377.
    19. J. H. Hwang, S. K. Choi, and Y. H. Han, “Dielectric Properties of BaTiO3 Codoped with Er2O3 and MgO,” Jpn. J. Appl. Phys., 40, 2001.
    20. M. F. Ashby, “A First Report On Sintering Diagrams,” Acta Metal., 22, 275-289, 1974.
    21. R. L. Coble, “Sintering Crystalline Solids : Ⅱ Experimental Test of Diffusion Models in Powder Compacts,” J. Appl. Phys., 32, 793-799, 1961.
    22. R. M. German, Sintering Theory and Practice, John Wiley & Sons, Inc., 225, 1996.
    23. 果世駒,粉末燒結理論,北京,2002。
    24. Cheng H-F et al. ibid, 1993,76 : 827
    25. Hennings D F K et al. ibid, 1987, 70 :23
    26. R. J. Brook, High Tech. Ceramics: Proceedings of The World Congress on High Tech Ceramics, Ed. By P. Vincenzini, Amsterdam, 757-761, 1987.
    27. M. T. Buscaglia, V. Buscaglia, and M. Viviani, “Atomistic Simulation of Dopant Incorporation in Barium Titanate,” J. Am. Ceram. Soc., 84 [2], 376-84, 2001.
    28. G. V. Lewis and C. R. A. Catlow, “PTCR Effect in BaTiO3,” J . Am. Ceram. Soc., 68 [l0], 555-58, 1985.
    29. T. Nagai and K. Iijima, “Effect of MgO Doping on the Phase Transformations of BaTiO3,” J. Am. Ceram. Soc., 83 [1], 107-12, 2000.
    30. S. T. Bae, D. K. Yim, and K. S. Hong, “Role of Liquid Phase in Achieving a Fine Microstructure and Diffusive Phase Transition of MgO-Doped BaTiO3,” J. Appl. Ceram. Technol., 679-686, 2009.
    31. H. Kishi, Y. Okino, M. Honda, Y. Iguchi, M. Imaeda, Y. Takahashi, H. Ohsato and T. Okuda, “The Effect of MgO and Rare-Earth Oxide on Formation Behavior of Core-Shell Structure in BaTiO3,” Jpn. J. Appl. Phys., 36, 1997.
    32. S. C. Jeon, C. S. Lee, and S. J. L. Kang, “The Mechanism of Core-Shell Structure Formation during Sintering of BaTiO3-Based Ceramics,” J. Am. Ceram. Soc., 1-4, 2012.
    33. S. H. Yoon, J. H. Lee, and D. Y. Kim, “Effect of the Liquid-Phase Characteristic on the Microstructures and Dielectric Properties of Donor- (Niobium) and Acceptor- (Magnesium) Doped Barium Titanate,” J. Am. Ceram. Soc., 86 [1], 88-92, 2003.
    34. S. H. Yoon, J. H. Lee, and D. Y. Kim, “Core-Shell Structure of Acceptor-Rich, Coarse Barium Titanate Grains,” J. Am. Ceram. Soc., 85, [12], 3111-13, 2002.
    35. Y. H. Hu, M. P. Harmer, and D. M. Smyth, “Solubility of BaO in BaTiO3,” J. Am. Ceram. Soc., 68 [7] 372-376 (1985).
    36. S. Lee, C. A. Randall, and Z. K. Liu, “Modified Phase Diagram for the Barium Oxide–Titanium Dioxide System for the Ferroelectric Barium Titanate,” J. Am. Ceram. Soc., 90 [8] 2589-2594 (2007).
    37. S. Lee, Z. K. Liu, M. H. Kim, and C. A. Randall, “Influence of Nonstoichiometry on Ferroelectric Phase Transition in BaTiO3,” J. Appl.Phys., 101, 054119 (2007).
    38. N. M. Hwang, S. H. Yoon, J. H. Lee, and D. Y. Kim, “Effect of the Liquid-Phase Characteristic on the Microstructures and Dielectric Properties of Donor- (Niobium) and Acceptor- (Magnesium) Doped Barium Titanate,” J. Am. Ceram. Soc., 86 [1] 88-92 (2003).
    39. J. K. Lee, K. S. Hong and J. W. Jang, “Roles of Ba/Ti Ratios in the Dielectric Properties of BaTiO3 Ceramics,” J. Am. Ceram. Soc., 84 [9] 2001-2006 (2001).

    無法下載圖示 校內:2018-08-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE