簡易檢索 / 詳目顯示

研究生: 張亦靜
Chang, Yi-Ching
論文名稱: 基於深度神經網路之奈米天線遠場輻射模式預測研究
Deep Neural Network-Based Study on Predicting Far-Field Radiation Pattern of Nano-Antenna
指導教授: 藍永強
Lan, Yung-Chiang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 118
中文關鍵詞: I 型奈米天線天線輻射圖有限差分時域方法反向神經網路轉移學習前向神經網路卷積轉置卷積最大池化層特徵擷取
外文關鍵詞: nano-antenna, radiation pattern, INN, FNN, VGG16, transfer learning, feature extraction, max pooling layer, fully connected layer
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人工智慧(Artificial Intelligence, AI)的快速發展,將AI整合到其它科學領域已經成為推動技術創新的關鍵趨勢。在奈米光學領域,特別是奈米天線(nano-antenna)設計的研究中,AI技術已被用於提升奈米天線的性能與設計效率,其在增強無線通訊、光學感測、生物標記等皆具有廣泛的應用。
    本篇論文利用有限差分時域(Finite-Difference Time-Domain, FDTD)方法模擬軟體 MEEP,進行電磁場計算與分析。我們設計出「I型」與矩形天線結構,將x極化的偶極子源(dipole source)放置於「I型」天線中心,藉由同時改變矩形天線結構與兩天線間距離,觀察其輻射模式的變化,除此之外,我們還建立了一套深度學習模型,分別為反向神經網路(Inverse Neural Network, INN)與前向神經網路(Forward Neural Network, FNN)以進行雙向預測。INN模型透過卷積與最大池化層進行特徵降採樣,擷取出天線輻射圖像的主要特徵,並通過全連接層進行最終的標籤分類,用以預測奈米天線的結構參數;FNN模型則以天線結構參數(分別為長度、寬度與間距)作為輸入,通過轉置卷積層將結構參數先進行上採樣的操作,進而在空間維度上擴展特徵圖,並重建出複雜的圖像細節,以預測出相對應的輻射模式。值得注意的是,在INN模型架構中,我們還應用了轉移學習中預訓練好的VGG16模型,允許在沒有大量數據集的情況下,有效地提升模型的學習與預測能力,能夠有效處理複雜的一對多映射問題,捕捉到更細微的數據特徵,進而提高模型整體的性能。
    綜合上述,通過深度學習模型的迭代訓練與驗證,本研究期望在未來能夠取代傳統的光學模擬方法,避免繁瑣的實驗計算與長時間的模擬,不僅能夠高效準確地設計複雜的奈米天線結構,還能進一步提高模型預測的精確性、可靠性與泛化能力。

    This thesis focuses on employing Artificial Intelligence (AI) in nanophotonics, specifically for nano-antenna design. AI has been utilized to enhance the design efficiency of nano-antennas and has found extensive applications in areas such as enhanced wireless communication, optical sensing, and biological markers.
    Utilizing the simulation software-MEEP and the Finite-Difference Time-Domain (FDTD) method, this research conducts electromagnetic field analysis to design ‘I-shaped’ and rectangular antennas. By altering the structures and the distance between these antennas, changes in the far-field radiation pattern were analyzed. An inverse neural network (INN) and a forward neural network (FNN) are established for bi-directional prediction. The INN model uses convolution layers and max pooling layers for feature extraction from radiation patterns and employs a fully connected layer for the classification prediction of structural parameters. Conversely, the FNN model takes structural parameters as input and utilizes transposed convolution layers to effectively reconstruct far-field radiation patterns. It is noteworthy that in the INN model, we have also applied a pre-trained VGG16 model from transfer learning to enhance the accuracy of the model's predictions. Finally, we use a variety of error assessment metrics to conduct a comprehensive analysis of these models.

    考試合格證明 ii 中文摘要 iii 英文摘要 iv 誌謝 xviii 圖目錄 xxii 表目錄 xxv 第一章 緒論 1 1-1 研究動機 1 1-2 深度學習(Deep Learning) 3 1-3 論文架構 6 第二章 表面電漿與奈米天線簡介 8 2-1 表面電漿的原理與特性 8 2-2 金屬 Drude Model 13 2-3 奈米天線 17 2-3-1 偶極子奈米天線(Dipole Nano-antennas) 18 2-3-2 八木天線(Yagi-Uda antenna) 20 2-3-3 弓形奈米天線(Bowtie Nano-antenna) 21 第三章 模擬方法與神經網路訓練 23 3-1 MEEP 電磁模擬軟體 23 3-2 馬克士威爾方程式(Maxwells Equation) 24 3-3 有限差分時域(FDTD)方法 26 3-4 完美匹配層(Perfect Matched Layer, PML) 29 3-5 Google Colaboratory-神經網路訓練工具 32 3-6 卷積神經網路(Convolution Neural Network) 34 3-6-1 卷積層(Convolution Layer) 35 3-6-2 池化層(Pooling Layer) 37 3-6-3 激活函數層(Activation Function Layer) 38 3-6-4 全連接層(Fully Connected Layer) 40 第四章 奈米天線與神經網路模型設計 42 4-1 奈米天線設計 42 4-2 建立神經網路模型與參數設定 45 4-2-1 反向神經網路模型(Inverse Neural Network, INN) 46 4-2-2 前向神經網路模型(Forward Neural Network, FNN) 49 4-3 遷移學習(transfer learning)-VGG16 模型 52 4-4 誤差評估指標 55 第五章 模型評估與實驗結果 57 5-1 不同天線結構的輻射模式圖 57 5-2 反向神經網路模型(Inverse Neural Network, INN) 60 5-2-1 學習曲線(Learning Curve) 64 5-2-2 以輻射圖預測天線幾何結構 65 5-2-3 遷移學習模型-VGG16 74 5-3 前向神經網路模型(Forward Neural Network, FNN) 80 5-3-1 學習曲線(Learning Curve) 83 5-3-2 以天線結構參數預測輻射圖 84 第六章 結論與未來展望 88 6-1 研究總結 88 6-2 未來展望與應用 89 Reference 90

    [1] D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nature Communications, July (2014).

    [2] 陳秉睿、陳國平, “奈米天線應用於薄膜太陽能電池吸收增強效益,”(2016).

    [3] B. Wu, Y. Lou, D. Wu, Q. Min, X. Wan, H. Zhang, Y. Yu, J. Ma, G. Si, and Y. Pang,“Directivity-Enhanced Detection of a Single Nanoparticle Using a Plasmonic Slot Antenna,” Nano Letters, vol.22, pp.2374-2380, (2022).

    [4]https://jasonblog.github.io/note/deep_learning/ji_qi_xue_7fd228_machine_learning__jie_shao.html

    [5] D.E. Rumelhart, G.E. Hintont, and R.J. Williams, “Learning representations by backpropagating errors,” Nature, vol.323, pp.533-536, (1986).

    [6] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Communications of the ACM, vol.60, no.6, pp.84-90, (2017).

    [7] M. Dampfhoffer ,T. Mesquida , A. Valentian , and L. Anghel, “Backpropagation-Based Learning Techniques for Deep Spiking Neural Networks: A Survey,” IEEE, pp.1-16, (2023).

    [8] https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligencemachine-learning-deep-learning-ai/

    [9] R. P. Yuda, C. Aroef, Z. Rustam, and H. Alatas, “Gender Classification Based on Face Recognition using Convolutional Neural Networks (CNNs),” Journal of Physics: Conference Series, vol.1490, (2020).

    [10] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise to Sensitivity in Private Data Analysis,” In Theory of Cryptography Conference (TCC), vol.3876, pp.265-284, (2006).

    [11] K.Wu, T. Rindzevicius, M.S. Schmidt, A.H. Thilsted, A. Boisen, “Optimizing silvercapped silicon nanopillars to simultaneously realize macroscopic, practical-level SERS signal reproducibility and high enhancement at low costs, Journal of Raman Spectroscopy, ” vol.48, pp.1808-1818, (2017).

    [12] K.A. Willets and R.P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annual Review of Physical Chemistry, pp.267-270, (2007).

    [13] 吳民耀、劉威志,“表面電漿子理論和模擬,” 物理雙月刊 28 卷 2 期 , pp.486-496, (2006).

    [14] 邱國斌、蔡定平,“金屬表面電漿子簡介,” 物理雙月刊28卷2期, pp.473-485, (2006).

    [15] N.W. Ashcroft and N.D. Mermin, “Solid state physics,”Academic Press Books, (2001).

    [16] N.-G. Park, “Organometal Perovskite Light Absorbers Toward a 20% Efficiency LowCost Solid-State Mesoscopic Solar Cell,” The Journal of Physical Chemistry Letters, vol.4, pp.2423-2429, (2013).

    [17] C.A. Balanis, “Antenna Theory: Analysis and Design,” John Wiley and Sons, (2016).

    [18] K.M. See, “Photoluminescence Driven Gold Optical Yagi-Uda Nanoantenna as Directional Broadband Photon Source,” pp.48-52, (2016).

    [19] M. Morshed, Z.Y. Li, B.C. Olbricht, L. Fu, A. Haque, L. Li, A.A. Rifat, M. Rahmani, A.E. Miroshnichenko & H.T. Hattori, “High Fluence Chromium and Tungsten Bowtie Nano-antennas,” Scientific Reports, (2019).

    [20] K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, pp.302-307, (1966).

    [21] 藍永強、邱行偉, “電漿模擬,” 物理雙月刊廿八卷二期,pp.497-504, (2006).

    [22] J. Berenger, “Perfectly matched layer for the FDTD solution of wavestructure interaction problemes,” IEEE Transactions on Antennas and Propagation, vol. 44, pp.110-117, (1996).

    [23] E. Stevens, L. Antiga, T. Viehman 著, 黃駿譯, “核心開發者親授!PyTorch 深度學習攻略 (Deep Learning with Pytorch),” 旗標科技, CH.8, pp.2-57, (2021).

    [24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, (1998).

    [25] R. Afriandika, D.I. Mulyana, M. Ulum, and D. Yuliana, “Optimasi Image Classification Pada Hewan Ular Dengan Convolutional Neural Network,” Smart Comp, vol. 11, no. 2, pp. 270-282, (2022).

    [26] “Introduction to Padding, https://www.geeksforgeeks.org/cnn-introduction-to-padding/

    [27] L. Calderon J, “A new activation function for Neural Networks - logmoid”, Linkedin, (2021),

    [28] S.R. Dubey, S.K. Singh, and B.B. Chaudhuri, “Activation functions in deep learning: A comprehensive survey and benchmark,” Elsevier, vol. 503, pp.92-108, (2022)

    [29] “Activation Functions”, ML Glossary.https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html?highlight=relu

    [30] I. Goodfellow, Y. Bengio and A. Courville, “Deep Learning,” MIT, pp.67-69, (2016).

    [31] S. V. G. Reddy, K.T. Reddy, V.V. Kumari, “Optimization of Deep Learning using Various Optimizers, Loss Functions and Dropout,” International Journal of Recent Technology and Engineering (IJRTE), vol.7, pp.448-455, (2019).

    [32] Machine-Learning-Image-Classification, Jupyter Notebook.

    [33] H. Noh, S. Hong, B. Han, “Learning Deconvolution Network for Semantic Segmentation,” IEEE International Conference on Computer Vision (ICCV), pp.1520-1528, (2015).

    [34] F. Chollet, “Building powerful image classification models using very little data,”Keras, (2016).

    [35] J. Wang, L. Bi, P. Sun, X. Jiao, X. Ma, X. Lei and Y. Luo, “Deep-Learning-Based Automatic Detection of Photovoltaic Cell Defects in Electroluminescence Images,”Sensors, vol.23, pp.297-318, (2022).

    [36] A. Mumuni and F. Mumuni, “CNN Architectures for Geometric Transformation‑Invariant Feature Representation in Computer Vision: A Review,” SN Computer Science, pp.2-23, (2021)

    [37] H. Taghvaee, A. Jain, X. Timoneda, C. Liaskos, S. Abadal, E. Alarcón and C.A. Albert,“Radiation Pattern Prediction for Metasurfaces: A Neural Network-Based Approach,”Sensors, vol.21, pp.2765-2790, (2021)

    下載圖示 校內:2025-08-17公開
    校外:2025-08-17公開
    QR CODE