簡易檢索 / 詳目顯示

研究生: 劉金燁
Liu, Chin-Yeh
論文名稱: 連結長方體法之設計與初步成果之品質評估
Design and Preliminary Quality Evaluation of Tie Cuboid Method
指導教授: 蔡展榮
Tsay, Jaan-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 105
中文關鍵詞: 點雲套合空載光達點雲連結體
外文關鍵詞: Tie Voxel, Airborne LiDAR Points, Registration
相關次數: 點閱:89下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了促成高品質的光達測量或提供其它測量方法多測站獲取的物表面三維點雲重建高品質物表面之應用與誤差分析和改正,蔡展榮老師提出一個新構想,稱為“連結體法”。本研究提出其中的連結長方體法,它適用於空載光達測量中不同航帶點雲資料連結之用,期望藉以偵測含大錯的資料點,進而檢測各種系統中相對的系統偏差,達成可靠的資料連結之目的。
    本研究主要目的是建立並測試連結長方體法的平差模式。首先根據真實空載光達資料中,點雲在長方體建物面上的分佈情形,及其系統偏差初探的結論,進而推導出連結長方體平差模式。為了簡化模式可行性的測試,模式中屬於系統性偏差的部份,只考量不同航帶之間的高程原點平移,並透過各種模擬資料進行理論精度之分析。
    模擬測試成果顯示體元結構的良好幾何強度使得不同的點雲密度及分佈情形或是不同座向的長方體建物的平差成果皆能有不錯的精度與可靠度,點雲和長方體表面的套合精度與模擬的套合精度相當。另外,以多連結體同時進行整體平差亦能求得精度為 ±0.0494m的單一航帶點雲高程原點平移量,其精度約等於點雲高程先驗精度的0.25倍。多航帶真實空載光達點雲的實驗結果顯示,採用連結長方體法,不同於一般常見的點/線/面的連結方法,以連結長方體平差計算方式連結不同航帶光達點雲資料,求得套合精度為 ±0.2132m。根據儀器廠商提供的高程先驗精度約為0.15公尺及平面精度約為0.3公尺,證明連結長方體平差模式應用在真實資料中應為可行。

    For achieving high-quality LiDARgrammetry and performing surface reconstruction by 3D point clouds acquired at multi-stations, Dr. Jaan-Rong Tsay proposed a novel idea which is called tie voxel method. One of diverse types of tie voxels is tie cuboid. This thesis proposes the tie cuboid method. This method can be used for multi-strips airborne LiDAR points registration. It is hoped that the blunder LiDAR points and the systematic errors could and must be detected somehow.
    The main task of this thesis is to formulate and test the tie cuboid model. Firstly, the spatial distribution and systematic elevation errors of real airborne LiDAR points are checked in order to define the prototype of the tie cuboid model. To simplify the complexity of this study, an airborne LiDAR strip is assumed to only have a shift parameter SZ in elevation. Then, theoretical accuracy and reliability of the tie cuboid method is studied by using simulated LiDAR points.
    Test results verify that the tie cuboid method provides good accuracy and reliability for airborne LiDAR point registration, even in the case of improper point distribution on a wall plane. The method exploits all implicit geometric conditions such as coplanarity, colinearity and perpendicularity so that it can provide good geometric strength for 3D point cloud registration. The test results using multiple tie cuboids between two neighboring LiDAR strips show that this method can determine an accurate SZ parameter with the a posteriori standard deviation ±0.0494m=0.25σz , where σz=±0.20m denotes the a priori standard deviation of Z-coordinate of a LiDAR point. Moreover, some tests are also done by using real airborne LiDAR points with a priori standard deviations ±0.15m and ±0.30m in vertical and horizontal direction, respectively. The root mean square distance 0.213m of a LiDAR point to the corresponding plane is achieved. These test results verify the applicability of the proposed tie cuboid method.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VI 表目錄 VIII 第一章 緒論1 §1-1研究動機與目的1 §1-2研究方法與內容5 §1-3論文架構6 第二章 空載光達點雲分佈及系統偏差7 §2-1空載光達點雲分佈分析7 §2-2空載光達點雲的系統偏差初探17 第三章 空載光達連結體航帶平差模式23 §3-1 新模式:連結體23 §3-2 演算法之設計及流程26 §3-3 連結長方體平差模式29 §3-3-1 長方體模型 29 §3-3-2 平差模式32 §3-3-3 起始值給定37 §3-4 高程原點平移參數及多連結體平差模式39 第四章 實驗成果與分析43 §4-1 模擬點雲資料43 §4-2 模擬資料之實驗成果48 §4-3 真實空載光達資料實驗82 第五章 結論與建議87 參考文獻90 附錄94 附錄A 模擬資料產生程式碼(MATLAB)94 附錄B 連結長方體平差程式碼(MATLAB)100

    王蜀嘉、曾義星,2003。以空載雷射掃瞄方法生產高精度及高解析度數值地形模型及數值地表模型誤差分析,內政部委託研究計畫報告書。
    王聖鐸,2005。以浮測模型理論萃取三維空間資訊-以建物重建為例,國立成功大學測量及空間資訊學系博士學位論文。
    李德仁、袁修孝,2002。誤差處理與可靠性理論,武漢大學出版社,ISBN 7-307-03474-3。
    李姝儀,2005。從地面雷射點雲萃取物面角特徵供多測站資料連結之研究,國立成功大學測量及空間資訊學系碩士學位論文。
    武漢測繪科技大學測量平差教研室,1996。測量平差基礎,北京測繪出版社,ISBN 7-5030-0814-8。
    湯凱佩、曾義星,2005。以共軛平面特徵進行光達點雲資料結合之平差模式,2005年內政部『辦理LIDAR之高精度及高解析度數值地形測繪、資料庫建置與應用推廣工作案』成果發表暨應用研討會論文集,工業技術研究院能源與資源研究所,第15-24頁
    曾義星、史天元,2002,三維雷射掃瞄技術及其在工程測量上之應用,2005年5月23下載自:http://nhmrc.cv.nctu.edu.tw/People/tyshih/Publications/35.pdf
    蔡欣怡,2004。結合雷射測高與強度資料進行區域平差可行性之研究,國立成功大學測量及空間資訊學系碩士論文。
    Akca, D., 2003. Full Automatic Registration of Laser Scanner Point Clouds, In: Gruen, A., Kahmen, H. (Eds.), Optical 3D Measurement Techniques VI, pp.330-337.
    Besl, P.J. and N.D. McKay, 1992. A method for registration of 3D shape, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp.239-256.
    Burman, H., 2000. Adjustment of Laser Scanner Data for Correction of Orientation Errors, International Archives of Photogrammetry and Remote Sensing, Amsterdam, vol.33, part B3/1, pp. 125-132.
    Crombaghs, M.J.E., Bruegelmann, R. and de Min, E.J., 2000. On the Adjustment of overlapping Strips of Laseraltimeter Height Data, International Archives of Photogrammetry and Remote Sensing, Amsterdam, vol.33, part B3/1, pp. 230-237.
    Flood, M. and Gutelius, B., 1997. Commercial implications of topographic terrain mapping using scanning airborne laser radar, Photogrammetric Engineering and Remote Sensing, 63(4), 327-329 and 363-366.
    Ghanma, M., 2006. Integration of Photogrammetry and LIDAR, Ph.D. Dissertation, Department of Geomatics Engineering, University of Calgary, 141p.
    Gruen, A. and D. Akca, 2004. Least Squares 3D Surface Matching, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Dresden, Germany, Vol. 34, Part 5/W16 (CD-ROM).
    Habib, A., Mwafag, G., Michel, M., and Al-Ruzouq, R., 2005. Photogrammetric and LiDAR Data Registration Using Linear Features, Photogrammetric Engineering & Remote Sensing, Vol. 71, No. 6, pp. 699-707.
    Kager, H., 2004. Discrepancies between Overlapping Laser Scanner Strips-Simultaneous Fitting of Aerial Laser Scanner Strips, XXth ISPRS Congress, Istanbul, Turkey, Vol XXXV, part B/1.
    Kilian, J., Haala, N. and Englich, M., 1996. Capture and Evaluation of Airborne Laser Scanner Data, International Archives of Photogrammetry and Remote Sensing, Vienna, Vol.XXXI, part B3, pp. 383-388.
    Lee, J. B., Yu, K. Y., Kim, Y. L. & Habib, A., 2005. Segmentation and extraction of linear features for detecting discrepancies between LIDAR data strips. Geoscience and Remote Sensing Symposium, 2005. IGARSS '05. Proceedings. 2005 IEEE International, Vol. 7, pp4954-4957.
    Maas, H.G., 2002. Methods for Measuring Height and Planimetry Discrepancies in Airborne Laserscanner Data, Photogrammetric Engineering and Remote Sensing, Vol. 68(9), pp. 933-940.
    Schenk, T., 2001. Modeling and Recovering Systematic Errors in Airborne Laser Scanners, OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, Stockholm, pp. 40-48.
    Stamos, I., and Allen, P.K., 2002. Geometry and Texture Recovery of Scenes of Large Scale, Computer Vision and Image Understanding, Vol. 88, No. 2, pp. 94-118.
    Stamos, I., and Leordeanu, M, 2003. Automated Feature-based Range Registration of Urban Scenes of Large Scale, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 555-561.
    Vosselman, G. and Maas, H.G., 2001. Adjustment and Filtering of Raw Laser Altimetry Data, OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Elevation Models, Stockholm, pp. 62-73.

    下載圖示 校內:2008-09-11公開
    校外:2008-09-11公開
    QR CODE