| 研究生: |
廖振業 Liao, Chen-Yeh |
|---|---|
| 論文名稱: |
以模擬與實驗方式探討熱電致冷晶片的冷卻及發電性能 Simulation and experiment on the cooling performance and power generation of thermoelectric cooling module |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 熱電致冷晶片 、熱電發電晶片 、尺度效應 、湯姆生效應 、派提爾效應 、廢熱回收 |
| 外文關鍵詞: | Thermoelectric cooling module (TECM) and generator (TEG), Scaling effect, Thomson effect, Peltier effect, Waste heat recovery |
| 相關次數: | 點閱:110 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於微型熱電致冷晶片擁有冷卻微處理器與其他小型裝置的潛力,而市售常見的熱電致冷晶片則被認為能應用在低溫的廢熱回收上。
因此,為了瞭解熱電致冷晶片的冷卻能力與發電性能,本文先藉由三維數值模擬的方式,分析三種不同尺寸的致冷晶片的冷卻能力,並探討尺度效應與湯姆生效應對於微型致冷晶片的影響。晶片兩端溫差分別設定為0與10K,在晶片內部熱電單元的截面積與長度比例固定的情況下,將其熱電單元的長度由500降至100 μm,因此可得到三種不同尺寸的晶片:內部分別包含8、20與40對的熱電對。模擬結果顯示,當晶片內部熱電單元長度下降、也就是熱電對的數目增加時,晶片的冷卻功率會有明顯的提昇。此外,考慮湯姆生效應(Thomson effect)的影響後,晶片的冷卻功率會提昇約5至7%。
接著,藉由實驗的方式,以不同的鰭片流道、加熱溫度、水流量與晶片串聯數目等操作參數,分析市售常見的熱電致冷晶片應用在廢熱回收上的發電性能。實驗結果顯示,兩種水冷鰭片的內部流道與水流量對於晶片的影響並不大;加熱溫度對於晶片的影響則較為顯著:較高的熱源溫度能夠增加晶片兩端的溫差,使得晶片的輸出功率較大。又由於低水流量的能耗較小,因此建議操作條件為較低的水流量與較高的熱源溫度。此外,晶片串聯數目越多,也能提供較大的輸出功率。然而由於派提爾效應(Peltier effect)以及每片晶片內部材料的不均勻性的影響,晶片多片串聯後,並不能以線性疊加的方式去預測其輸出功率。最後,也在相同的條件下,比較熱電致冷晶片與熱電發電晶片的發電性能,結果發現致冷晶片會比發電晶片更適合應用在溫度低於150 oC的廢熱回收上。
Miniature thermoelectric cooling module (TECM) has been considered as a promising device to achieve effective cooling in microprocessors and other small-scale equipments. Moreover, commercially available TECMs are useful devices to recover low-temperature waste-heat recovery for power generation.
To understand the performances of miniature TECMs, three different modules are analyzed through a three-dimensional numerical simulation. Particular attention is paid to the influence of scaling effect and Thomson effect on the cooling performance. Two different temperature differences of 0 and 10K between the top and the bottom copper interconnectors are taken into account. In addition, three different modules, consisting of 8, 20 and 40 pairs of thermoelectric (TE) element, are investigated where a length of the element decreases from 500 to 100μm with the condition of fixed ratio of cross-sectional area to length. It is observed that when the number of pairs of TE element in a module is increased from 8 to 40, the cooling power of the module grows drastically. The obtained results also suggest that the cooling power of a TECM with Thomson effect can be improved by a factor of 5-7%, and the higher the number of pairs of thermoelectric (TE) element, the better the improvement of the Thomson effect on the cooling power.
Then, to understand the characteristics of power generation from the commercially available TECMs, the performances of the modules at various flow patterns, heating temperatures, flow rates of water and numbers of modules in series are studied experimentally. The results show that the effects of flow pattern of two heat sinks and water flow rate on the performance are not significant, but the heat source plays an important role. Therefore, a lower water flow rate is suggested to save power, whereas a higher hot-side temperature which leads to a larger temperature difference is recommended to give a better performance of the module. Increasing number of modules in series can also provide higher output power. However, the performance of the modules in series cannot be simply predicted using linear superposition due to the Peltier effect and the non-uniformity of every module. The feature of a thermoelectric generator (TEG) is also examined and compared with the TECMs. It is found that TECM is a better choice for power generation from recovering waste heat if the temperature of a system is below 150oC.
1. Abramzon, B., “Numerical optimization of the thermoelectric cooling devices,” ASME Journal of Electronic Packaging, Vol.129, pp.339-347, 2007.
2. Anatychuk, L.I., Luste, O.J., Kuz, R.V., “Theoretical and experimental study of thermoelectric generators for vehicles,” Journal of Electronic Materials, Vol.40, pp.1326-1331, 2011.
3. Antonova, E.E., Looman, D.C., “Finite elements for thermoelectric device analysis in ANSYS,” 24th International Conference on Thermoelectrics, pp.215-218, 2005.
4. Astrain, D., Vian, J.G., Martinez, A., Rodriguez, A., “Study of the influence of heat exchangers' thermal resistances on a thermoelectric generation system,” Energy, Vol.35, pp.602-610, 2010.
5. Bell, L.E., “Cooling, heating, generating power, and recovering waste heat with thermoelectric systems,” Science, Vol.321, pp.1457-1461, 2008.
6. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.K., Goddard, III, W.A., Heath, J.R., “Silicon nanowires as efficient thermoelectric materials,” Nature, Vol.451, pp.168-171, 2008.
7. Cahill, D.G., Goodson, K., Majumdar, A., “Thermometry and thermal transport in micro/nanoscale solid-state devices and structures,” ASME Journal of Heat Transfer, Vol.124, pp.223-241, 2002.
8. Champier, D., Bedecarrats, J.P., Rivaletto, M., Strub, F., “Thermoelectric power generation from biomass cook stoves,” Energy, Vol.35, pp.935-942, 2010.
9. Chen, J., Yan, Z., Wu, L., “The influence of Thomson effect on the maximum power output and maximum efficiency of a thermoelectric generator,” Journal of Applied Physics, Vol.79, pp.8823-8828, 1996.
10. Chen, G., “Nanoscale energy transport and conversion,” Oxford University, 2005.
11. Chen, M., Rosendahl, L.A., Condra, T., “A three-dimensional numerical model of thermoelectric generators in fluid power systems,” International Journal of Heat and Mass Transfer, Vol.54, pp.345-355, 2011.
12. Chen, W.H., Liao, C.Y., Hung, C.I., “A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect,” Applied Energy, Vol.89, pp.464-473, 2012.
13. Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R., “On-chip cooling by superlattice-based thin-film thermoelectrics,” Nature Nanotechnology, Vol.4, pp.235-238, 2009.
14. Esarte, J., Min, G., Rowe, D.M., “Modelling heat exchangers for thermoelectric generators,” Journal of Power Sources, Vol.93, pp.72-76, 2001.
15. Gou, X., Xiao, H., Yang, S., “Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system,” Applied Energy, Vol.87, pp.3131-3136, 2010.
16. Gurevich, Y.G., Logvinov, G.N., “Physics of thermoelectric cooling,” Semiconductor and Science Technology, Vol.20, pp.R57-64, 2005.
17. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P., “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, Vol.451, pp.163-167, 2008.
18. Hsiao, Y.Y., Cheng, W.C., Chen, S.L., “A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine,” Energy, Vol.35, pp.1447-1457, 2010.
19. Hsu, C.T., Huang, G.Y., Chu, H.S., Yu, B., Yao, D.J., “Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators,” Applied Energy, Vol.88, pp.1291-1297, 2011.
20. Huang, M.J., Yen, R.H., Wang, A.B., “The influence of the Thomson effect on the performance of a thermoelectric cooler,” International Journal of Heat and Mass Transfer, Vol.48, pp.413-418, 2005.
21. Huang, M.J., Chou, P.K., Lin, M.C., “Thermal and thermal stress analysis of a thin-film thermoelectric cooler under the influence of the Thomson effect,” Sensors and Actuators A, Vol.126, pp.122-128, 2006.
22. Ioffe, A.F., “Semiconductor thermoelements and thermoelectric cooling,” London: Info-search Ltd., 1st ed., 1957.
23. Landau, L.D., Pitaevskii, L.P., Lifshitz, E.M., “Electrodynamics of Continuous Media,” Butterworth-Heinemann, 2nd ed., 1984.
24. Lee, K.H., Kim, O.J., “Analysis on the performance of the thermoelectric micro-cooler,” International Journal of Heat and Mass Transfer, Vol.50, pp.1982-1992, 2007.
25. Lee, K.H., Kim, H., Kim, O.J., “Effect of thermoelectric and electrical properties on the cooling performance of a micro thermoelectric cooler,” Journal of Electronic Materials, Vol.39, pp.1566-1571, 2010.
26. Liang, G., Zhou, J., Huang, X., “Analytical model of parallel thermoelectric generator,” Applied Energy, Vol.88, pp.5193-5199, 2011.
27. Mahan, G.D., “Figure of merit for thermoelectric,” Journal of Applied Physics, Vol.65, pp.1578-1583, 1989.
28. McCarty, R., “A comparison between numerical and simplified thermoelectric cooler models,” Journal of Electronic Materials, Vol.39, pp.1842-1849, 2010.
29. Meng, F., Chen, L., Sun, F., “Performance optimization for two-stage thermoelectric refrigerator system driven by two-stage thermoelectric generator,” Cryogenics, Vol.49, pp.57-65, 2009.
30. Meng, F., Chen, L., Sun, F., “Performance analysis for two-stage TEC system driven by two-stage TEG obeying Newton’s heat transfer law,” Mathematical and Computer Modelling, Vol.52, pp.586-595, 2010.
31. Min, G., Rowe, D.M., “Optimisation of thermoelectric module geometry for 'waste heat' electric power generation,” Journal of Power Sources, Vol.38, pp.253-259, 1992.
32. Min, G., Rowe, D.M., “Evaluation of thermoelectric modules for power generation,” Journal of Power Sources, Vol.73, pp.193-198, 1998.
33. Niu, X., Yu, J., Wang, S., “Experimental study on low-temperature waste heat thermoelectric generator,” Journal of Power Sources, Vol.188, pp.621-626, 2009.
34. Poudel, B., “High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science, Vol.320, pp.634-638, 2008.
35. Riffat, S.B., Ma, X., “Thermoelectrics: a review of present and potential applications,” Applied Thermal Engineering, Vol.23, pp.913-935, 2003.
36. Rowe, D.M., “Thermoelectrics, an environmentally-friendly source of electrical power,” Renewable Energy, Vol.16, pp.1251-1256, 1999.
37. Rowe, D.M., “Thermoelectric handbook: macro to nano,” CRC press, 1st ed., 2006.
38. Semenyuk, V., “Miniature thermoelectric modules with increased cooling power,” 25th International Conference on Thermoelectrics, pp.322-326, 2006.
39. Seifert, W., Ueltzen, M., Muller, E., “One-dimensional modeling of thermoelectric cooling,” Physica Status Solidi A-Applied Research, Vol.194, pp.277-290, 2002.
40. Sharp, J., Bierschenk, J., Lyon, H.B. Jr., “Overview of solid-state thermoelectric refrigerators and possible applications to on-chip thermal management,” Proceedings of the IEEE, Vol.94, pp.1602-1612, 2006.
41. Simons, R.E., Ellsworth, M.J., Chu, R.C., “An assessment of module cooling enhancement with thermoelectric coolers,” ASME Journal of Heat Transfer, Vol.127, pp.76-84, 2005.
42. Silvester, P.P., Ferrari, R.L., “Finite elements for electrical engineers,” Cambridge University, 3rd ed., 1996.
43. Thacher, E.F., Helenbrook, B.T., Karri, M.A., Richter, C.J., “Testing of an automobile exhaust thermoelectric generator in a light truck,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol.221, pp.95-107, 2007.
44. Thomas, J.P., Qidwai, M.A., Kellogg, J.C., “Energy scavenging for small-scale unmanned systems,” Journal of Power Sources, Vol.159, pp.1494-1509, 2006.
45. Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B., “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature, Vol.413, pp.597-602, 2001.
46. Wang, C.C., Hung, C.I., Chen, W.H., “Design of heat sink for improving the performance of thermoelectric generator using a two-stage optimization,” Energy, Vol.39, pp.236-245, 2012.
47. Wu, K.H., Hung, C.I., “Thickness scaling characterization of thermoelectric module for small-scale electronic cooling,” Journal of Chinese Society of Mechanical Engineers, Vol.30, pp.475-481, 2009.
48. Yamashita, O., “Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the cooling performance,” Applied Energy, Vol.86, pp.1746-1756, 2009.
49. Yu, J., Zhao, H., “A numerical model for thermoelectric generator with the parallel plate heat exchanger,” Journal of Power Sources, Vol.172, pp.428-434, 2007.
50. Zhang, Y., Shakouri, A., Zeng, G., “High-power-density spot cooling using bulk thermoelectrics,” Applied Physics Letters, Vol.85, pp.2977-2979, 2004.
51. Zhu, J., Gao, J., Chen, M., Zhang, J., Du, Q., Rosendahl, L.A., Suzuki, R.O., “Experimental study of a thermoelectric generating system,” Journal of Electronic Materials, Vol.40, pp.744-752, 2011.
52. ANSYS Release 12.0.1 Documentation, ANSYS Inc., 2010.
53. 陳維新, “生質物與生質能,” 高立圖書有限公司,2010年7月。
54. 陳維新, “能源概論,” 高立圖書有限公司,2011年1月。
55. 陳維新,江金龍, “空氣污染與控制,” 高立圖書有限公司,2012年1月。