簡易檢索 / 詳目顯示

研究生: 何堃森
Ho, Kuen-Sen
論文名稱: 引擎渦輪段精密翼形件之鑄造與鍍層技術及製程/微組織模擬研究
Development of Process Technologies and Process /Microstructure Simulation in Casting and Surface Coating for Engine Turbine Section Precision Airfoil Components
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 240
中文關鍵詞: 等軸晶顯微組織模擬單方向凝固鑄件晶粒形態Mar-M-247LC合金氣相鋁化鍍層鑄造模擬系統實驗設計縮孔鑄件設計René77合金精密鑄造電腦輔助冷卻曲線分析示差掃描熱量計分析熱差分析超合金鑄件擴散鍍層非接觸式包覆法
外文關鍵詞: DOE, Design of Experiment, Computer-Aided Cooling Curve Analysis, DTA, CA-CCA, Casting Simulation System, Differential Thermal Analyzer, Differential Scanning Calorimeter, Mar-M-247LC Alloy, Superalloy Casting, Vapor Phase Aluminized Coating, DSC, Diffusion Coating, Grain Morphology, Out of Pack/Above Pack, Directionally Solidified Casting, Microstructure Simulation, Equiaxed Grain, René77 Alloy, Investment Casting, Porosity, Gating Design, Casting Design
相關次數: 點閱:133下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文研究引擎渦輪段渦輪葉片及噴嘴等之精密鑄造與鋁化鍍層技術的製程/微組織模擬,內容包括(1).使用實驗計畫法改善製程,(2).鎳基超合金之熱性質研究,(3).使用電腦模擬系統之製程改善,(4).等軸晶渦輪噴嘴鑄造製程之顯微組織及空心複雜單方向凝固製程渦輪葉片之顯微組織等模擬及實驗驗證,與(5).高溫鋁化鍍層製程改善等五個部份。
      本研究首先使用實驗計畫法,改善傳統精密鑄造法製作超合金等軸晶渦輪噴嘴鑄造製程方案,以高效率選擇參數之方法,獲得巨觀包括表面晶粒,目視、螢光、X光、尺碼等非破壞檢驗及微觀包括微縮孔含量及分佈、夾渣、陶模/金屬間反應,合金缺乏,與顯微結構等金相破壞觀察、檢驗等等合乎規格要求之鑄件後,再以熱差分析 (DTA),示差掃描熱量計分析 (DSC) 及電腦輔助冷卻曲線分析 (CA-CCA) 等裝備及方法,獲取材料之熱性質,包括γ′相之固溶溫度,固相線溫度,液相線溫度,潛熱及固相率與溫度間之關係等,接著使用3-D CAD軟體繪製不同鑄造方案之渦輪噴嘴及空心葉片模型,採用有限元素法,經網格化後,由模擬軟體之前處理器將材料之性質指派,並將金屬-陶模界面,成核條件,輻射因子,起始、邊界條件及方程式與缺陷形成指標等設定後,以模擬器進行充填及凝固分析,藉由模擬分析找出最適製程改善方案,將分析所得之溫度場,然後應用推測學之晶胞自生(Cellular Automaton, CA)模式,配合成核、成長、方位等指標,再以模擬器進行分析及計算,來進行等軸晶及方向晶晶粒組織型態(包括形狀、大小及方向)的模擬預測,所得之結果於後處理器中顯示,再與實際精密鑄造程序所得之鑄件晶粒比較,確定晶粒大小、形狀、粒度均勻度及角度。最後以氣體滲透法鋁化法改善製程以提昇基材之表面抗高溫氧化能力,同時探討鑄件本身之表面粗糙度及鑄件擺放方式對鍍層厚度及鍍層內鋁含量之影響與鑄件表面缺陷,如夾渣物,凸出物,凹陷,孔洞等,對鍍層形態及高溫抗氧化性之影響。
      本研究各部份所獲得的成果如下:
      實驗計畫法方面,成功的由64個製程參數獲得原1,008個製程參數之結果,並以低成本、高效率實驗計畫,製作出合乎巨觀 (包括目視、螢檢及X-光) 及微觀檢驗規格要求之複雜6片一組噴嘴鑄件。微縮孔含量經實際切割3個成品 (每個噴嘴21塊,共63塊),在50倍顯微鏡(實際面積為2.26到 2.58 mm2之範圍)下觀察,最多只有4.0%,合於規格要求。
      探討René77合金熱性研究方面,本研究所量測及分析結果為:γ′相固溶溫度為1135℃,固相線溫度為1264℃、液相線溫度為1357℃。由示差掃描熱量計分析所得之潛熱值為140.4 kJ/kg。利用電腦輔助冷卻曲線分析可得到精確的René77合金之固相率對溫度的分佈函數,提供合金凝固熱傳模擬之重要依據。
      電腦模擬系統之製程改善方面,藉由模擬結果得知,最好之方案優於實驗計畫法,不僅可完全消除巨觀縮孔且微縮孔含量最差部份只有1.0 %。經與相同方案設計下實驗所得之鑄件結果比較,非常的吻合。
      等軸晶渦輪噴嘴鑄造件及空心複雜單方向凝固製程渦輪葉片等之表面晶粒形態進行模擬預測製程之顯微組織及實驗驗證方面,本研究以推測學模型之晶胞自生模式及有限元素熱傳模式,配合熱性研究及成核、成長、方位,等軸晶-柱狀晶轉變等預測指標,成功的模擬出多元素超合金之表面3D晶粒形態。等軸晶晶粒形態並經由平均粒度及粒度均勻度分佈參數之定量分析,與實際相同條件實驗所得之鑄件比較,不僅晶粒形態分佈吻合,晶粒大小之定量上也很接近。而柱狀晶晶粒形態經由晶粒形態、大小與晶粒數目、晶粒方位偏離﹝001﹞角度及晶粒寬度等之定量分析,與實際相同條件實驗所得之鑄件比較,不僅晶粒形態分佈吻合,晶粒大小、方位之定量結果上也很接近。研究結果顯示所採用之電腦模擬系統是相當準確而可靠的,經由本系統的輔助,工程師可以數值實驗的方式有效取得適當的方案設計。
      高溫氣體滲透法鋁化鍍層製程改善方面,所得之實驗結論為,鑄件之擺放方式將影響鍍層厚度之均勻性,但對鍍層最外層鋁含量之影響則無規則性。鑄件表面粗糙度Ra高於1.89 µm時,表面粗糙度對鍍層厚度及品質有相當大影響,而Ra低於1.40 µm時,表面粗糙度對鍍層厚度及品質則沒有明顯的影響。鑄件表面有凸出物或凹陷等缺陷將容易附著氧化物並造成鍍層形態之改變,而夾渣物及孔洞則會阻擋擴散之進行,造成鍍層出現缺口,這些鍍層型態皆會影響高溫抗氧化性質。

    Turbine blade and vane are jet engine key components. The purpose of this dissertation is to improve process technology and process /microstructure simulation of casting and surface coating for two complex turbine section parts. The cast parts under investigation are a René 77 equiaxed 6-vane turbine multi-nozzle of dimensions 230mmL*180mmH*51mmW and a Mar-M-247LC complex hollow directionally solidified blade of dimensions 53mmL*50mmH*15mmW.

    This dissertation is divided into five sections. It begins by describing how a good quality multi-vane segment may be produced utilizing Design of Experiment (DOE) methods. This is then followed by René 77 thermal measurements including γ′solvus, solidus and liquidus temperatures, latent heat and solid fraction versus temperature relations utilizing Differential Thermal Analyzer (DTA), Differential Scanning Calorimeter (DSC) and Computer Aided-Cooling Curve Analysis (CA-CCA). Thermal data are then applied to the casting simulation model to obtain optimal process parameters and to predict cast multi-vane segment porosity defects which are then compared with actual casting experiment results. Next a stochastic model which couples a Cellular Automaton technique with finite element solidification heat transfer scheme is applied to the casting simulation model with grain nucleation/ growth model and other criteria to simulate grain morphology on a casting surface for equiaxed and columnar grain solidification which are then compared with actual casting experiment results. Lastly, improvement of the cast surface via vapor phase aluminized coating process is assessed.

    The results are summarized as follows:
    1. The DOE method not only succeeds in selecting 64 critical process parameters from the original 1,008 parameters, but also chooses an optimal gating system to meet low cost and high efficiency requirements. Final castings obtained are free from macroporosity, and the worst microporosity occurs on the inner and outer shrouds of third blade tip-section in the range of 4% under 50X magnification.

    2. Regarding measurement of the René 77 thermal data - DTA shows theγ′solvus temperature is 1135℃, and solidus and liquidus temperatures are 1264℃ and 1357℃ respectively. The DSC illustrates that latent heat is 140.4 kJ/kg. The CA-CCA method aptly displays the solid fraction versus temperature relation.

    3. Casting simulation models are used to obtain optimal process design and predict porosity defects. The simulated result for macroporosity formation of the René 77 complex nozzle segment investment casting alloy agrees very well with the experimental measurements obtained from the actual casting. Simulated results for microporosity formation for the nozzle segment investment casting also agree very well with the experimental porosity map. Such agreement is not only qualitative in nature but also even accurate regarding absolute quantity. The simulated results show that macroporosity from the optimal gating design is completely eliminated and the microporosity is lower than the DOE’s design. It also shows that the worst microporosity formation is around 1.5% for this optimal casting design.

    4. Regarding grain morphology simulation modeling, a computer simulation system which adopts finite element method to model the mold filling and solidification behavior via stochastic Cellular Automaton methods together with nucleation and grain growth behavior models are used to predict grain morphology of equiaxed and directionally solidified castings. Simulated grain morphology results of the complex nozzle segment casting and in the complex blade casting agree quite well with experimental observations obtained from the actual casting. The quantitative values of the average grain size, grain uniformity index, grain number, grain width and grain orientation are furthermore compared between simulated results and actual experimental measurements and also show good consistency.

    5. Casting surface improvement by application of vapor phase aluminized coating: An out of pack/above pack process is employed to investigate the effects on surface roughness and part orientation on the quality of the vapor phase aluminized coating for a René 77 nozzle segment casting. The following conclusions are reached based on the experimental results. (1) Casting orientation can significantly affect the coating thickness uniformity, however orientation has small effect on coating aluminum content. Casting orientation #3, of which placement in the chamber is inner shroud pointing inward, trailing edge leftward and concave side upward, result not only in aluminum content and thickness specifications being met but also in a far more uniform coating. (2) Casting surface roughness has an evident effect on the occurrence of coating thickness irregularities when coating is thicker than 1.87µm, yet effects on coating roughness become insignificant when the surface roughness of the casting is below 1.43µm. (3) Surface defects of negative surface intrusions and positive matter extrusions cause grit particles and oxides to embed in the casting and subsequently change coating morphology. Inclusions and open voids, however, impede the diffusion process and cause discontinuity in the coat film. These irregular coatings deteriorate high temperature resistance properties of the coated casting.

    Based upon the above, it may be concluded that the utilization of the employed computer simulation system is reasonably accurate in predicting defects arising from mold filling, solidification or grain morphology for complex investment turbine component castings, and thus such system may be considered as a valuable tool by engineers in efficiently obtaining optimal design of casting parameters.

    摘要............................................................ I Abstract ........................................................ IV 目錄..........................................................VII 表目錄.......................................................... XI 圖目錄........................................................XIII 符號說明....................................................XVIII 第一章緒論..................................................... 1 1.1 研究背景與動機............................................... 1 1.1.1 渦輪引擎................................................. 1 1.1.2 超合金材料及精密鑄造製程................................... 1 1.1.3 高溫鍍層................................................. 4 1.1.4 影響渦輪段精密翼形件鑄件性能及壽命之因素................... 4 1.1.5 研究動機................................................. 5 1.2 文獻論述..................................................... 6 1.2.1 實驗計畫法................................................ 6 1.2.2 陶模充填金屬液及凝固過程數值分析......................... 8 1.2.2.1 凝固熱傳解析之發展與現況............................. 10 1.2.2.2 凝固潛熱的計算方法....................................11 1.2.3 鑄造缺陷形成之理論及預測方式............................ 15 1.2.3.1 凝固過程縮孔形成之理論及預測方式...................... 15 1.2.4 微組織模擬.............................................. 23 1.2.5 數值模擬結果驗證技術...................................... 28 1.2.6 擴散鍍層.................................................. 30 1.3 研究目的與內容............................................. 36 第二章實驗計畫法製程改善...................................... 54 2.1 前言........................................................ 54 2.2 實驗方法及步驟............................................. 54 2.3 結果與討論.................................................. 56 2.3.1 鑄造條件對縮孔之影響..................................... 56 2.3.2 鑄件設計對收縮縮孔之影響................................... 58 2.3.3 使用冷鐵對縮孔含量及分佈之影響............................. 59 2.3.3.1 保溫綿包覆方式之影響................................... 60 2.3.3.2 葉片後緣方向之影響.................................... 60 2.3.4 René77 合金熱均壓及熱處理條件與硬度之關係探討............ 61 2.3.5 René77 合金熱均壓及熱處理條件與機械性質之關係探討.......... 61 2.3.6 René77 合金之顯微組織探討................................. 61 2.3.6.1 熱均壓前、後顯微組織之比較............................ 62 2.3.6.2 再結晶層形成原因之探討................................. 63 2.4 結論........................................................ 63 第三章René77 合金之熱性研究.................................... 95 3.1 前言........................................................ 95 3.2 原理及理論基礎............................................. 95 3.2.1 熱差分析(DTA) ............................................ 95 3.2.2 示差掃描熱量計(DSC)分析.................................. 95 3.2.3 電腦輔助冷卻曲線分析(CA-CCA)技術........................ 97 3.3 實驗方法................................................... 99 3.4 結果與討論................................................ 100 3.4.1 熱差分析................................................. 100 3.4.2 示差掃描熱量計分析...................................... 100 3.4.3 電腦輔助冷卻曲線分析...................................... 101 3.5 結論...................................................... 101 第四章使用電腦模擬系統之製程改善..............................111 4.1 前言.......................................................111 4.2 數學模式及解法演算..........................................111 4.2.1 充填及凝固模式............................................111 4.2.2 輻射熱轉移模式...........................................112 4.2.3 縮孔預測指標............................................114 4.2.4 模擬流程..................................................115 4.3 實驗方法.....................................................116 4.4 結果與討論.................................................117 4.4.1 鑄造模擬系統的驗證.......................................117 4.4.2 修正方案1 之評估........................................118 4.4.3 修正方案2 之評估........................................119 4.4.4 修正方案3 之評估........................................119 4.4.5 修正方案4 之評估....................................... 120 4.4.6 最佳方案設計............................................ 121 4.5 結論...................................................... 122 第五章微組織模擬及實驗驗證................................... 137 5.1 前言...................................................... 137 5.2 等軸晶顯微組織之模擬及實驗驗證............................. 138 5.2.1 數學模式及解法演算...................................... 138 5.2.1.1 模擬流程............................................... 138 5.2.1.2 微組織模擬方法......................................... 138 5.2.1.2.1 成核模式.......................................... 139 5.2.1.2.2 成長動力學......................................... 140 5.2.1.2.3 晶粒擇優成長方向.................................... 141 5.2.2 實驗方法................................................. 142 5.2.3 結果與討論............................................. 143 5.2.3.1 未放置冷鐵之方案..................................... 143 5.2.3.2 放置冷鐵之方案......................................... 145 5.2.4 結論.................................................... 145 5.3 單方向凝固顯微組織之模擬及實驗驗證........................ 145 5.3.1 數學模式及解法演算...................................... 147 5.3.1.1 模擬流程............................................... 147 5.3.1.2 微組織模擬方法......................................... 148 5.3.1.2.1 等軸晶-柱狀晶轉變預測指標........................... 149 5.3.2 實驗方法................................................. 149 5.3.3 結果與討論............................................. 150 5.3.3.1 Mar-M-247LC 液相線及固相線溫度量測.................. 150 5.3.3.2 表面晶粒型態的模擬與實驗.............................. 150 5.3.3.3 晶粒型態的定量驗證.................................... 151 5.3.3.1.1 晶粒數目之比較...................................... 151 5.3.3.1.2 晶粒方位偏離主應力軸角度之比較..................... 152 5.3.3.1.3 晶粒寬度之比較...................................... 152 5.3.3.4 Mar-M-247LC 合金熱處理條件與機械性質................. 153 5.3.3.5 Mar-M-247LC 合金熱處理條件與顯微組織................. 154 5.3.4 結論................................................... 155 第六章高溫鋁化鍍層製程改善................................... 192 6.1 前言...................................................... 192 6.2 鋁化披覆原理............................................... 192 6.3 實驗方法及步驟.............................................. 193 6.4 結果與討論................................................ 195 6.4.1 鑄件擺放方位對鍍層厚度及最外層鍍層鋁含量之影響.......... 196 6.4.2 鑄件表面粗糙度對鍍層厚度及最外層鍍層鋁含量之影響......... 197 6.4.3 鑄件表面缺陷對鍍層品質之影響............................ 198 6.4.4 鍍層組織及成份之探討..................................... 199 6.4.5 鍍層硬度之探討........................................... 199 6.4.6 鍍層之氧化實驗探討...................................... 199 6.5 結論...................................................... 200 第七章總結論................................................ 226 第八章參考資料............................................... 227

    1.傅鶴齡,“航空發動機設計與製造”,天工書局,1982.
    2.I. E. Treager, “Aircraft Gas Turbine Engine
    Technology”, 2nd ed., McGraw-Hill, 1979.
    3.C. T. Sims and W. C. Hagel, “The Superalloys”,
    John Wiley & Sons, Inc., New York, 1972.
    4.C. T. Sims, N. S. Stoloff, and W. C. Hagel,
    “Superalloys II”, John Wiley & Sons, Inc., New
    York, 1987.
    5.G. L. Erickson, “Superalloy VIM and EBCHR
    Process”, International Symposium on Liquid
    Metal Processing and Casting, Santa Fe, New
    Mexico, Sep. 11-14, 1994, pp. 1-15.
    6.G. W. Goward, “Current Research on the Surface
    Protection of Superalloys for Gas Turbine
    Engines”, J. of Metals, October 1970, pp. 31.
    7.G. L. Erickson, K. Harris and R. E. Schwer,
    “Directionally solidified DS CM 247 LC- Optimized
    Mechanical Properties Resulting from Extensive
    r” Solutioning”, Gas Turbine Conference and
    Exhibit, Houston, Texas, March 18-21, 1985, pp.
    1-10.
    8.C. T. Sims, “Superalloys 1984”, TMS-AIME,
    Warrengale, PA, 1984, pp. 399.
    9.R. A. Horton, Metals Handbook, Vol 15, Materials
    Park, OH: ASM International, pp. 253-269.
    10.K. S. Ho and S. H. Liou, “Effects of Casting
    Parameters on the Properties of Investment Cast
    MAR-M-004 Integral Airfoils”, CHUKUNG, Vol. 71,
    1991, pp. 1-17.
    11.N. Paton, “Premium Quality Castings for
    Aerospace”, Processing of the Merton C. Flemings
    Sympoium on Solidification and Materials
    processing, TMS, 2001, pp. 343-350.
    12.R. V. Hillery, “Coatings for High-Temperature
    Structural Materials: Trends and Opportunities”,
    National Academy Press, Washington, D.C., 1996.
    13.P. A. Siemers and R. L. Mehar, “Mechanical and
    Physical Properties of Plasma- Sprayed Stabilized
    Zirconia”, Ceramic Engineering and Science
    Proceedings, 4(9-10), 1983, pp. 828-840.
    14.W. J. Brindley and R. A. Miller, “TBCs for
    Better Engine Efficiency”, Advanced Materials
    Processes, 8, 1989, pp. 29-33.
    15.Rolls-Royce Catalogue
    16.陳耀茂,實驗計劃法導論,育友圖書 91年4月.
    17.實驗計劃法,中國生產力中心, 1980.
    18.何堃森、曾清暉, “鑄造參數對17-4PH合金尺寸收縮率
    影響之研究”, 鑄工第79期, 1993年12月.
    19.何堃森, “田口式品質工程在精密鑄造TFE-731第三級
    渦輪葉片之應用”, 1991年國家品質月品質經營案例.
    20.T. A. Kircher, B. G. McMordie, K. Richards,
    “Use of Experimental Designs to Evaluate
    Formation of Aluminide and Platinum Aluminide
    Coatings”, Surface and Coatings Technology,
    108-109, 1998, pp. 24-29.
    21.莊鑫堅,“P型電極氧化鎳薄膜之製備與其電性及光性
    之探討”,國立成功大學材料科學及工程學系碩士論
    文, 2002.
    22.6σ改善計畫階段,漢翔公司訓練教材,2002.
    23.D. M Stefanescu, “Methodologies for Modeling of
    Solidification Microstructure and Their
    Capabilities”, ISIJ International, 35, 6:637,
    1995.
    24.W. J. Boettinger, S. R. Coriell, A. L. Greer, A.
    Karma, W. Kurz, M. Rappaz and R. Trivedi,
    “Solidification Microstructures: Recent
    Delvelopmenrs, Future Directions”, Acta Mater,
    48, 2000, pp. 43-70.
    25.U. Chandra,"Finite Element Simulation of the
    Investment Casting Process for Manufacture of
    Aircraft Engines Parts”, Modeling of Casting,
    Welding and Advanced Solidification Processes V,
    The Minerals, Metals and Materials Society
    (TMS), 1991, pp. 630.
    26.W. S. Hwang, “Computer Simulation for the Fluid
    Flow in Casting System”, M. S. Thesis,
    Department of Metallurgical and Materials
    Engineering, University of Pittsburgh, 1981.
    27.R. A. Stoehr and W. S. Hwang, “Modeling the
    Flow of Molten Metal Having a Free Surface
    During Entry into Molds”, Proceeding of the
    Conference on Modeling of Casting and Welding
    Processes II, 1983, pp. 47-58.
    28.W. S. Hwang and R. A. Stoehr, “Fluid Flow
    Modeling for Computer Aided Design of Casting”,
    Journal of Metals, 1983, pp. 22-29.
    29.W. S. Hwang and R. A. Stoehr, “Modeling of
    Fluid Flow”, ASM Metals Handbook, 9th edition,
    Vol. 15, Chapter 11, Section B, 1988,pp.867-876.
    30.C. W. Hirt, “Flow Analysis for Non-expects”,
    Proceeding of the Conference on Modeling of
    Casting and Welding Processes II, 1983,pp.67-75.
    31.K. Anzai and E. Niyama, “Quasi Three-
    Dimensional Mold Filling Simulation System for
    Prediction of Defects in Die Castings”,
    Conference Proceeding on the Modeling of
    Casting, Welding and Advanced Solidification
    Processes IV, 1988, pp. 471-485.
    32.K. Anzai and T. Uchida, “Mold Filling Patterns
    of Flat Plate Die Castings”, Proceeding of the
    Conference on the Modeling of Casting, Welding
    and Advanced Solidification Processes V, 1990,
    pp. 741-748.
    33.E. Niyama and K. Anzai, “Simplified VOF and
    Adaptive Pressure Iteration Methods for Mold
    Filling Simulation”, Proceeding of the
    Conference on the Modeling of Casting, Welding
    and Advanced Solidification Processes VI, 1993,
    pp. 469-476.
    34.H. Nomura, K. Terashima, and K. Keishima,
    “Prediction of Die Casting Flow Behavior by
    Three Dimensional Simulation”, Imono, Vol. 63,
    No. 5, 1991, pp. 425-430.
    35.J. J. Valencia, Symposium on Thermophysical
    Properties: Metalworking Industry Needs and
    resources, Concurrent Technologies Corporation,
    Oct. 22-23, 1996. Unpublished work.
    36.J. H. Kuo, “Development and Application of an
    Integrated Simulation System for Casting”,
    Department of Materials Science and Engineering
    National Cheng Kung University, June 2001.
    37.H. Huang, V. K. Suri, J.L. Hill, and J.T. Berry,
    “A Convenient Heat Source/Sink Algorithm for
    Modeling Phase Changes During Metal
    Solidification in Castings and Water Evaporation
    in Green Sand Molds”, Transaction of American
    Foundrymen’s Society, 1991, pp. 685-689.
    38.S. L. Backerud and G. K. Sigworth, “Recent
    Developments in Thermal Analysis of Aluminum
    Casting Alloys”, Transaction of American
    Foundrymen’s Society, 1989, pp. 459-464.
    39.L. Backerud, E. Krol and J. Tamminen,
    “Solidification Characteristics of Aluminum
    Alloys, Vol.1: Wrought Alloys”, Skanaluminum
    Universitetslaget AS, Oslo, Norway, 1986.
    40.I. G. Chen and D. M. Stefanescu,
    “Computer-Aided Differential Thermal Analysis of
    Spherical and Compacted Graphite Cast Irons”,
    Transaction of American Foundrymen’s Society,
    1984, pp. 947-964.
    41.K. G. Upadhya, D. M. Stefanescu and D. P.
    Yeager, “ Computer-Aided Cooling Curve
    Analysis: Principle and Application in Metal
    Casting”, Transaction of American Foundrymen’s
    Society, 1989, pp. 61-66.
    42.C. H. Su and H. L. Tsai, “A Direct Method to
    Include Latent Heat Effect for Modeling Casting Solidification”, Transaction of American Foundrymen’s Society, 1991, pp. 781-789.
    43. 鍾尚浩, “鑄造灌模及凝固解析模式之改良及其相關實驗技術之研究發展”, 博士論文, 國立成功大學, 1992.
    44. R. C. Mackenzine, Isr, J. Chem., 22, 1982, pp. 203.
    45. J. Campbell, “Feeding Mechanisms in Castings”, AFS Cast Metals Research Joumal.March, 1969, pp. 1.
    46. 李昆達,“鋁合金微縮孔形成機構之分析”,國立成功大學材料科學及工程學系,碩士論文,中華民國87年6月。pp. 3-10.
    47. Y. W. Lee, “A Study on the Mechanism of Porosity Formation in Cast A356 and A206 Aluminum Alloy”, Ph.D. Thesis, National Cheng Kung University, R.O .C., 1992.
    48. J. E. Gruzleski and B. M. Closset, “The Treatment of Liquid Aluminum-Silicon Alloys”, The American Foundrymen's Society.
    49. Y. S. Kuo, E. Chang and Y. L. Lin, “The Feeding Effect of Risers on the Mechanical Properties of A201 Al Alloy Plate Casting”, AFS Trans.,97, 1989, pp. 777.
    50. K. D. Li, “A Study on the Mechanism of Porosity Formation in Aluminum Alloy Castings”, Ph.D Thesis, National Cheng Kung University, 2003.
    51.T. S. Piwonka and M. C. Flemings, “Pore
    Formation in Solidification”, Transaction of
    AIME, 1966, pp. 1-8.
    52.S. Minakawa, I. V. Samarasekera and F. Weinberg,
    “Centerline Porosity in Plate Castings”,
    Metallurgical Transactions B, 16B, 1985, pp 823.
    53.E. Niyama, T. Uchida, M. Morikawa and S. Saito,
    “Predicting Shrinkage in Large Steel Casting from
    Temperature Gradient Calculations”, AFS
    International Cast Metals Journal, June, 1981,
    pp. 16-22.
    54.E. Niyama, T. Uchida, M. Morikawa and S. Saito,
    “A Method of Shrinkage Prediction and Its
    Application to Steel Casting Practice”, AFS
    International Cast Metals Journal, September
    1982, pp. 52-63.
    55.W. H. Johnson and J. K. Kura, “Some Principles
    for Preducing Sound Al-7Mg Alloy Casting”, AFS
    Transactions, Vol. 67, 1959, pp 532.
    56.C. Y. Liu, K. Murakami and T. Okamoto,
    “Internal and External Shrinkage in
    Unidirectionally Solidified Al-4.5wt% Cu
    Alloy”, Materials Science and Engineering,
    A108, 1989, pp 265.
    57.R. A. Entwistle, J. E. Gruzleski and P. M.
    Thomas, “Solidification and Casting of
    Metals”, Proc. International Conference on
    Solidification, 1979, the Metal Society, pp.345.
    58.H. Huang and J. T. Berry, “Evaluation of
    Criteria Function to Mimimize Microporosity
    Formation in Long-Freezing Range Alloys”, AFS
    Trans., 1994.
    59.G. V. Kutumba Rao and V. Panchanathan, “End
    Chills Influence on Solidification Soundness of
    Al-Cu-Si(LM4) Alloy Castings”, AFS
    Transactions, Vol.81, 1973, pp. 110.
    60.V. de L. Davies, “Feeding Range Determined by
    Numerically Computed Heat Distribution”, AFS
    Cast Metals Res. J., 11, 1975, pp 33.
    61.V. de L. Davies, “Computed Feeding Range for
    Gravity Die Castings”, the Metal Society, 1979,
    pp. 357.
    62.J. Lecomte-Beckers;“Study of Microporosity
    Formation in Nickel -Base Superalloys”, Metall.
    Trans. A, 19A, 1988, pp. 2341.
    63.J. D. Zhu and I. Ohnaka, “Computer Simulation
    of Interdendritic Porosity in Aluminum Alloy
    Ingots and Casting”, Modeling of Casting,
    Welding and Advanced Solidification Processes V,
    1991, pp. 435-442
    64.H. Combean, D. Carpentier, J. Lacaze and G.
    Lesoult, “Modeling of Microporosity formation
    in aluminium alloys castings”, Materials
    Science and Engineering, A173, 1993, pp.
    155-159.
    65.S. T. Kao, E. Chang and Y. W. Lee, “Role of
    Interdendritic Fluid Flow on the Porosity
    Formation in A206 Alloy Plate Casting”,
    Materials Transaction, JIM, Vol. 35, 1994, pp.
    632.
    66.S. T. Kao and E. Chang, “The Role of the
    Pressure Index in Porosity Formation in A356
    Alloy Castings”, Cast Metals, Vol. 7, 1995, pp.
    219.
    67.Ch. Pequet and M. Rappaz,“Modeling of Porosity
    Formation during the Solidification of Aluminium
    Alloys Using a Mushy Zone Refinement Method”,
    Modeling of Casting, Welding and Advanced
    Solidification Processes IX, The Minerals,
    Metals and Materials Society (TMS), Edited by P.
    R. Sahm, P. N. Hansen and J. G. Conley, 2000,
    pp. 71-79.
    68.D. R. Poirier, K. Yeum and A. L. Maples, “A
    Thermodynamic Predicition for Microporosity
    Formation in Aluminum-Rich Al-Cu Alloys”,
    Metallurgical Transactiona A, 18A, 1987, pp.
    1979-1987.
    69.Xuebing Huang, Yun Zhang, and Zhuangqi Hu,
    “Effect of Small Amounts of Nitrogen on
    Properties of a Ni-Based Superalloy”,
    Metallurgical and Materials Transactions A, Vol.
    30A, 1999, pp. 1755-1761.
    70.M. C. Flemings, “Solidification Processing”,
    MCGRAW-Hill Book Company, New York, 1974.
    71.K. Kubo and R. D. Pehlke, “Mathematical
    Modeling of Porosity Formation in
    Solidification”, Metall. Trans. B, Vol. 16 B,
    1985, pp. 359.
    72.G. K. Sigworth and C. Wang, “Mechanisms of
    Porosity Formation during Solidification: A
    Theoretical Analysis”, Metall. Trans B, Vol.
    24B, 1993, pp. 349.
    73.J. Lecomte-Beckers, “Study of Microporosity
    Formation in Nickel- Base Superalloys”,
    Metallurgical Transactions A, Vol. 19A, 1988,
    pp. 2341-2348.
    74.Y. K. Ko, V. Sahai, J. T. Berry, and R. A.
    Overfelt, “Prediction of Porosity in Cast
    Equiaxed alloy 718”, Modelling of Casting,
    Welding and Advanced Solidification Process VII,
    The Minerals, Metals and Materials Society
    (TMS), 1995, pp. 731-738.
    75.P. K. Sung, D. R. Poirier, S. D. Felicelli, E.
    J. Poirier, and A. Ahmed, “Simulation of
    Microporosity in IN718 Equiaxed Investment
    Castings”, Journal of Crystal Growth Vol. 226,
    No.2-3, June 2001, pp. 363-377.
    76.S. D. Felicell, D. R. Poirier, and P. K. Sung,
    “A Model for Prediction of Pressure and
    Redistribution of Gas Forming Elements in
    Multicomponent Casting Alloys”, Metallurgical
    and Materials Transactions B, Vol. 31B, Dec.
    2000, pp. 1283-1292.
    77.E. Bachelet and G. Lesoult, “Quality of
    Castings of Superalloys”, Conference Proceeding
    on High Temperature Alloys for Gas Turbines,
    Liege, Belgium, 1978, pp. 665-699.
    78.H. S. Chandraseckariah and S. Seshan,
    “Microstructural Features of Investment-cast,
    Nickel-base Superalloy IN-100”, Transactions of
    the American Foundrymen’s Society, Vol. 103,
    1995, pp. 23-26.
    79.R. F. Smart, “Effects of Foundry Variables on
    Cast Nickel-Base Superalloys”, Metallurgia and
    Metal Forming, Vol. 4, No. 7, July, 1977, pp.
    286-287, 290-294.
    80.E. Chang and J. C. Chou, “Microporosity in an
    Investment-Cast Turbine Blade of IN-713LC
    Superalloy”, Transaction of the American
    Foundrymen’s Society, Vol. 95, 1987,pp.749-754.
    81.R. Castillo, A. K. Koul, J. P. Immarigeon and P.
    Lowden, “Processing of Superalloy, Investment
    Castings through HIPing”, Conference Processing
    on Advances in High Temperature Structural
    Materials and Protective Coatings, Ontario,
    Canada, 1994, pp. 147-168.
    82.M, Lamberigts, “Hip′ing Various Precision Cast
    Engine Components in Nickel-Base Superalloys”,
    Superalloys 1980, pp. 285-294.
    83.G. M. Glenn, “Improved Properties in Castings
    by Hot Isostatic Pressing”, Sampe Quarterly,
    V8, No.1 Oct. 1976, pp. 1-9.
    84.R. F. Bilhars, “Activated Diffusion Healing of
    Rene 77 Parts”, GEAE P21TF15 Specification.,
    1989.
    85.W. Kurz and D. J. Fisher, “Fundamentals of
    Solidification”, Trans Tech Publications Ltd,
    4th edition, 1998, pp 11-12.
    86.D. M. Stefanescu, “Computational Modeling of
    Microstructure Evolution during Casting
    Solidification”, Proceedings of the 7th Asian
    Foundry Congress, Taiwan 2001, pp. 13-24.
    87.K. O. Yu, “Modeling for Casting and
    Solidification Process”, Marcel Dekker, Inc,
    Vol. 5, 2002, pp. 123-187.
    88.M. F. Zhu and C. P. Hong,“A Modified Automaton
    Model for the Simulation of Dendritic Growth in
    Solidification of Alloys”, ISIJ International,
    Vol. 41, No. 5, 2001, pp.436-445.
    89.S. G. R. Brown and J. A. Spittle, Computer
    Simulation of Grain Growth and Macrostructure
    Development during Solidification” Materials
    Science and Technology, Vol. 5, No. 4, 1989, pp.
    362-368.
    90.J. A. Spittle and S. G. R. Brown, “Computer
    Simulation of the Effects of Alloy Variables on
    the Grain Structures of Castings” Acta
    Metallurgica, Vol. 37, No. 7, 1989, pp.
    1803-1810.
    91.Ch.-A. Gandin and M. Rappaz, “A Coupled Finite
    Element-Cellular Automaton Model for the
    Prediction of Dendritic Grain Structures in
    Solidification Processes”, Acta Metallurgica et
    Materialia, Vol. 42, No. 7, 1994, pp. 2233-2246.
    92.M. Rappaz and Ch.-A. Gandin, “Probabilistic
    Modeling of Microstructure Formation in
    Solidification Processes”, Acta Metallurgica et
    Materialia, Vol. 41, No. 2, 1993, pp. 345-360.
    93.Ch.-A. Gandin, Desbiolles, J.-L., Rappaz, M.,
    and Thévoz, Ph, “A Three-Dimensional Cellular
    Automaton-Finite Element Model for the
    Prediction of Solidification Grain Structure”,
    Metallurgical and Materials Transactions A, Vol.
    30A, 1999, pp. 3153-3165.
    94.H. W. Hesselbarth and I. R. Göbel, “Simulation
    of Recrystallization by Cellular Automata”,
    Acta Metall. Mater., Vol.39, 1991, pp.
    2135-2143.
    95.K. O. Yu, J. J. Nichols, and M. Robinson,
    “Finite-element Thermal Modeling of Casting
    Microstructures and Defects”, JOM 6, 1992, pp.
    21-25.
    96.Ch. A. Gandin, M. Rappaz, and R. Tintillier
    “Three-Dimensional Probabilistic Simulation of
    Solidification Grain Structures: Application to
    Superalloy Precision Castings”, Metallurgical
    Transactions A, Vol. 24A, 1993, pp. 467-479.
    97.E. Chang, and J. C. Chou, “Grain Refining and
    Control for Equiaxed Turbine Blade”, Chukung,
    Vol. 51, 1986, pp. 1-19.
    98.K. O. Yu, “Modeling for Casting and
    Solidification Processing”, Marcel Dekker,
    Inc., New York, 2002, pp. 333-372.
    99.G. K. Upadhya, K. O. Yu, M. A. Layton, and A. J.
    Paul, “Solidification Grain Structure in
    Investment Castings”, Modelling of Casting,
    Welding and Advanced Solidification Process VII,
    The Metals and Materials Society,1995,pp.517-524
    100.Ch.-A. Gandin, M. Rappaz, and R. Tintillier
    “3-Dimensional Simulation of the Grain Formation
    in Investment Castings”, Metallurgical and
    Materials Transactions A, Vol. 25A, 1994, pp.
    629-635.
    101.J. C. Liu, T. S. Lee, and W. S. Hwang,
    “Computer Model of Unidirectional Solidification
    of Single Crystal of High Temperature Alloys”,
    Materials Science and Technology, Vol. 7,
    October, 1991, pp. 954-964.
    102.K. O. Yu, J. A. Oti, M. Robinson and R. G.
    Carlson, “Solidification Modeling of
    Complex-Shaped Single Crystal Turbine
    Airfoils”, Superalloys 1992,(SD Antolovich et
    al, eds.), Warrendale, PA: The Minerals, Metals
    and Materials Society, 1992, pp. 135-144.
    103.Th. Imwinkelried, J. L. Desbiolles, Ph.
    Gilgien, M. Rappaz, F. Suter and Ph. Thévoz,
    “Modelling of Single Crystal Turbine Blade
    Castings”, Modelling of Casting, Welding and
    Advanced Solidification Process V, The Metals
    and Materials Society, 1991, pp. 635-610.
    104.A. Ludwig, I. Steinbach, N. Hofmann, M.
    Balliel, M. Van Woerkom, and P. R. Sahm,
    “Modeling of Undercooling effects during the
    Directional Solidification of Turbine Blades”,
    Modelling of Casting, Welding and Advanced
    Solidification Process VI, The Metals and
    Materials Society, 1993, pp. 87-94.
    105.Ch. A. Gandin and M. Rappaz, “A Coupled Finite
    Element-Cellular Automaton Model for the
    Prediction of Dendritic Grain Structures in
    Solidification Processes”, Acta Metallurgica et
    Materialia, Vol. 42, No. 7, 1994, pp. 2233-2246.
    106.M. Rappaz and Ch. A. Gandin, “Probabilistic
    Modeling of Microstructure Formation in
    Solidification Processes”, Acta Metallurgica et
    Materialia, Vol. 41, No. 2, 1993, pp. 345-360.
    107.Ch. A. Gandin, Desbiolles, J. L., M. Rappaz,
    and Ph. Thévoz, “A Three-Dimensional Cellular
    Automaton-Finite Element Model for the
    Prediction of Solidification Grain Structure”,
    Metallurgical and Materials Transactions A, Vol.
    30A, 1999, pp. 3153-3165.
    108.A. Kermanpur, N. Varahram, P. Davami, and M.
    Rappaz, “Thermal and Grain-Structure Simulation
    in a Land-Based Turbine Blade Directionally
    Solidified with the Liquid Metal Cooling
    Process”, Metallurginal and Materials
    Transactions B, Vol. 31B, 2000, pp. 1293-1304.
    109.Ch. A. Gandin, M. Rappaz, D. West, and B. L.
    Adams, “Grain Texture Evolution during the
    Columnar Growth of Dendritic Alloys”,
    Metallurgical and Materials Transactions A, Vol.
    26A, 1995, pp. 1543-51.
    110.P. Carter, D. C. Cox, C. A. Gandin, and R. C.
    Reed, “Process Modelling of Grain Selection
    during the Solidification of Single Crystal
    Superalloy Castings”, Materials Science and
    Engineering A, Vol. 280, 2000, pp233-246.
    111.B. G. Thomas and D. D. Goettsch, “Modeling the
    Directional Solidification Process,” Modelling
    of Casting, Welding and Advanced Solidification
    Process V, The Metals and Materials Society,
    1991, pp. 635-610.
    112.J. L. Desbiolles, Ch. A. Gandin, J. -F. Joyeux,
    M. Rappaz, and Ph. Thévoz, “A 3D CAFÉ Model
    for the Prediction of Solidification Grain
    Structures”, Modelling of Casting, Welding and
    Advanced Solidification Process VIII, The Metals
    and Materials Society, 1998, pp. 433-440.
    113.J. L. Desbiolles, Ph. Gilgien, T. Imwinkelried,
    Ch.-A. Gandin, M. Rappaz, S. Rossmann and Ph.
    Thévoz, “Modelling of Dendritic Single Crystal
    Solidification at the Macro- and Microscopic
    Levels: Application to Turbine Blades”,
    Modelling of Casting, Welding and Advanced
    Solidification Process VI, The Metals and
    Materials Society, 1993, pp. 63-70.
    114.K. Grube, J. G. Kura and J. H. Jackson, Film
    Produced by Battelle Memorial Institute for AFS.
    115.K. G. Davis, “Filling of Gates during
    Casting”, AFS International Cast Metal Journal,
    March 1977, pp. 23-27.
    116.G. W. Goward, “Progress in Coatings for Gas
    Turbine Airfoils”, Surface and coatings
    Technology, 108-109, 1998, pp. 73-79.
    117.T. Mantyla, P. Vuorissto and P. Kettunen,
    “Chemical Vapor Deposition of Plasma Sprayed
    Oxide Coatings”, Thin Solid Films, 118, 1984,
    pp. 437-444.
    118.A. R. Nicoll and G. Wahl, “The Effect of
    Alloying Additions on MCrAlY Systems-an
    Experimental Study”, Thin Solid Films, 95,
    1982, pp. 21-34.
    119.F. J. Pennisi and D. K. Gupta, “Improved
    Plasma-Sprayed Ni-Co-Cr-Al-Y and Co-Cr-Al-Y
    Coatings for Aircraft Gas Turbine
    Applications”, Thin Solid Films, 84, 1981,
    49-58.
    120.D. L. Ruckle, “Plasma-sprayed Ceramic Thermal
    Barrier Coatings for Turbine Vane Platforms”,
    Thin Solid Films, 73, 1980, pp. 455-461.
    121.K. H. Stern, “Metallurgical and Ceramic
    Protective Coatings”, Chapman &Hall , London,
    1996, pp. 237-240.
    122.M. F. Singleton, J. L. Murray and P. Nash, in
    “Binary Alloy Phase Diagrams”, edited by T.
    Massalski, H. Okamoto, P. Subramanian and L.
    Kacprzak, 2nd eds.(ASM International, Materials
    Park, Ohio, 1990), Vol. 1, pp. 181.
    123.A. Thevand, S. Poize, J. P. Crousier, and R.
    Streiff, Journal of Materials Science, 16, 1981,
    p2467.
    124.P. M. Robinson and M. B. Bever, “Intermetallic
    Compounds”, Wiley, New York, 1967, pp. 42
    125.S. Shankar and L. L. Seigle, “Interdiffusion
    and Intrinsic Diffusion in the NiAl(δ) Phase of
    the Al-Ni System”, Metallurgical Transactions
    A, 9, 1978, pp. 1467-1476.
    126.林惠娟, “以CVD法鋁化鎳基超合金表面之研究”, 國
    立成功大學礦冶及材料科學研究所, 碩士論文, 中華民
    國74年6月, pp. 15-16.
    127.G. W. Goward and D. H. Boone, Oxid. Met. 3,
    1971, pp. 475-495.
    128.R. Pichoir, “Aluminide Coatings on Nickel or
    Cobalt-base Superalloys: Principal Parameters
    Determining Their Morphology and Composition”,
    High Temperature Alloys for Gas Turbines, Edited
    by D. Coutsouradis et al, Applied Science
    Publishers, London, 1978, pp. 191-208.
    129.C. Duret and R. Pichoir, “Protective Coatings
    for High Temperature Materials: Chemical Vapour
    Deposition and Pack Cementation Processes”,
    Edited by E. Lang, Elsevier Applied Science
    Publishers, London, 1983, pp. 33-78.
    130.R. Pichoir,“Influence of the Mode of Formation
    on the Oxidation and Corrosion Behaviour of
    NiAl-type Protective Coatings”, Material and
    Coatings to Resist High Temperature Corrosion,
    edited by D. R. Holmes and A. Rahmel, Applied
    Science Publishers, London, 1978, pp 271-291.
    131.E. Fitzer and H. J. Mäurer, “Diffusion and
    Precipitation Phenomena in Aluminized and
    Chromium-aluminized Iron- and Nickel-base
    Alloys”, Material and Coatings to Resist High
    Temperature Corrosion, edited by D. R. Holmes
    and A. Rahmel, Applied Science Publishers,
    London, 1978, pp. 253-268.
    132.A. Squillace, R. Bonetti, N. J. Archer, and J.
    A. Yeatman, “The Control of the Composition and
    Structure of Aluminide Layers Formed by Vapour
    Aluminising”, Surface and Coatings Technology,
    120-121, 1999, pp. 118-123.
    133.S. R. Levine and R. M. Caves, “Thermodynamics
    and Kinetics of Pack Aluminide Coating Formation
    on IN-100”, Journal of the Electrochemical
    Society: Solid-state Science and Technology,
    Vol. 121, No. 8, 1974, pp.1051-1064.
    134.林晨光, “以CVD法鋁矽化鎳基超合金之鍍層相結構分
    析”, 國立成功大學礦冶及材料科學研究所, 碩士論
    文, 中華民國81年6月, pp. 59-65.
    135.B. K. Gupta, L. L. Seigle, “The Effect on the
    Kinetics of Pack Aluminization of Varying the
    Activator”, Thin Solid Films, 73, 1980, pp.
    365-371
    136.W. Johnson, K. Komarek, and E. Miller, Trans.
    Met. Soc. AIME 242, 1968, pp. 1685-1690.
    137.K. S. Ho and W. S. Hwang, “Effects of Casting
    and Process Designs on Shrinkage Porosity in
    Nozzle Segments Investment Casting of René 77
    Alloy”, Transactions of the American
    Foundrymen’s Society, part 1, 2002, pp.681-695.
    138.何堃森、林怡伶、黃文星、曾清暉, “鑄件設計及製
    程設計對René 77合金渦輪噴嘴精密鑄造件縮孔之影
    響”, 鑄工, Vol. 28, No. 3, September, 2002, pp.
    135-143.
    139.E. W. Ross, “Rene’ 77- A New Alloy for
    Turbine Blades”, Metal Progress, Jan., 1968,
    pp. 89-90.
    140.G. W. Meetham, “The Development of Gas Turbine
    Materials”, Applied Science Publishers Ltd,
    London, 1981, pp. 105.
    141.N. W. Betcher, “René77 Investment Vacuum Cast
    Turbine Blades and Vanes”, GEAE C50TF15
    Specification, 1992.
    142.D. C. Madeleine, “The Microstructure of
    Superalloys”, Gordon and Breach Science
    Publishers, The Netherlands, 1997, pp. 77 & 105.
    143.Schaeffer et al., “Method for Preventing
    Recrystallization after Cold Working a
    Superalloy Article”, US Patent 5,598,968, 1997.
    144.L. Winberg, “Recrystallization in a Powder
    Metallurgy Nickel-Base Superalloy, Journal of
    Materials Sciences”, 13, 1978, pp. 2365-2372
    145.A. J. Porter and Brian Ralph,
    “Recrystallization of a Nickel-base Superalloy:
    Kinetics and Microstructural Development”,
    Materials Science and Engineerings, 59, 1983,
    pp. 69-78.
    146.S. D. Bond and J. W. Martin, “Surface
    Recrystallization in a Single Crystal
    Nickel-based Superalloy”, Journal of Materials
    Science, 19, 1984, pp. 3867-3872.
    147.李源弘, 熱分析, 全民書局Chapter 20, 1998.
    148.R. D. Shull and A. Joshi, “Thermal Analysis in
    Metallurgy”, The Minerals, Metals & Materials
    Society, 1992.
    149.W. W. Wendlandt, “Thermal Analysis”, 1992.
    150.D. M. Stefanescu, G. Upadhya, and D.
    Bandyopadhyay, “Heat Transfer Solidification
    Kinetics Modeling of Solidification of
    Castings”, Metallurgical Transactions A, Vol.
    21A, 1990, pp. 997-1005.
    151.I. G. Chen and D. M. Stefanescu,“Computer-
    Aided Differential Thermal Analysis of
    Spheroidal and Compacted Graphite Cast Irons”,
    AFS Transactions, 1984, pp. 947-965.
    152.K. G. Upadhya, D. M. Stefanescu, K. Lieu, and
    D. P. Yeager, “Computer-Aided Cooling Curve
    Analysis:Principles and Applications in Metal
    Casting”, AFS Transactions, 1989, pp. 61-66.
    153.C. H. Su and H. L. Tsai, “A Direct Method to
    Include Latent Heat Effect for Modeling Casting
    Solidification”, AFS Transactions, 1991, pp.
    781-789.
    154.J. H. Chen and H. L. Tsai, “Comparison on
    Different Models of Latent Heat Release for
    Modeling Casting Solidification”, AFS
    Transactions, 1990, pp. 539-546.
    155.S. H. Jong, and W. S. Hwang, “Study of
    Functional Relationship of Fraction of Solid
    with Temperature in Mushy Range for A356 Al
    Alloy”, AFS Transactions, 1992, pp. 939-946.
    156.Y. F. Chen, S. H. Jong, and W. S. Hwang,
    “Effects of Cooling Rate on Latent Heat Released
    Mode of Near Pure Aluminum and Aluminum-silicon
    Alloys”, Materials Science and Technology,
    1996, Vol.12, pp. 539-544.
    157.J. O. Barlow and D. M. Stefanescu,“Computer-
    Aided Cooling Curve Analysis Revisited”, AFS
    Transactions, 1997, pp. 349-354.
    158.I. G. Chen and D. M. Stefanescu,“Computer-
    Aided Differential Thermal Analysis of
    Spheroidal and Compacted Graphite Cast Irons”,
    AFS Transactions, 1984, pp. 947-965.
    159.K. G. Upadhya, D. M. Stefanescu, K. Lieu, and
    D. P. Yeager, “Computer-Aided Cooling Curve
    Analysis:Principles and Applications in Metal
    Casting”, AFS Transactions, 1989, pp. 61-66.
    160.W. W. Wendlandt, “Thermal Analysis”, 1992.
    161.K. S. Ho and W. S. Hwang, “Computer Simulation
    for the Investment Casting of René 77 Alloy and
    Its Experimental Verification”, International
    Journal of Cast Metals Research, 2002, 15, pp
    331-336.
    162.何堃森、黃文星、曾清暉, “使用鑄造模擬模型工具
    對René 77超合金精密鑄造件獲得理想方案設計之研
    究”, 鑄造工程學刊, Vol. 29, No. 1, 2003, pp.
    21-34.
    163.D. Waite and M. Samonds, “Finite Element
    Simulation of Solidification in Investment
    Casting”, 39th Annual Technical Meeting:
    Investment Casting Institute, 1991, pp.17:1-25.
    164.Microstructure Modelling: keywords and
    concepts, e-Tips Nr.8. calcom.
    165.G. K. Upadhya, S. Das, U. Chandra and A. J.
    Paul, “Modelling the Investment Casting
    Process: a Novel Approach for View Factor
    Calculation and Defect Prediction”, Appl. Math.
    Modelling, Vol. 19, June, 1995, pp. 354-362.

    166.R. Siegel and J. R. Howell, “Thermal Radiation
    Heat Transfer”, (Hemisphere Publishing Corp.,
    3rd ed. , 1992), Chapter 7, pp. 253-311.
    167.D. R. Poirier and E. J. Poirier, “Heat
    Transfer Fundamentals for Metal Casting”, TMS,
    1994, pp. 42.
    168.Properties and Application of René 77, Snecma
    Specification DMD 473, 1986.
    169.Y. S. Touloukian, R. W. Powell, C. Y. Ho, and
    P. G. Klemens, “Thermophysical Properties of
    Matter”, Vol. 2, 1970, pp. 254-256 and pp.
    317-319.
    170.M. Samonds,“Thermophysical Properties of
    Material”, UES Software, Inc..
    171.P. R. Beeley and R. F. Smart, “Investment
    Casting”, (The Institute of Materials, 1995),
    pp. 174.
    172.K. S. Ho and W. S. Hwang, “Grain Morphology
    Simulation for Precision Casting of Mar-M-247LC
    Alloy and Its Experimental Verification”,
    Accepted to be published in the Transactions of
    American Foundrymen’s Society, 2004.
    173.K. S. Ho and W. S. Hwang, “Grain Morphology
    Simulation for Precision Casting of René 77
    Alloy and Its Experimental Verification”,
    Transactions of the American Foundrymen’s
    Society, 2003, in press.
    174.何堃森、黃文星、曾清暉、仲銘華, “MAR-M-247LC超
    合金精密鑄造件單方向性晶粒型態之模擬及其實驗驗
    證”,鑄造工程學刊, in press.
    175.何堃森、郭哲豪、黃文星、曾清暉, “René 77超合金
    精密鑄造件顯微組織之模擬及其實驗驗證”, 鑄工,
    Vol. 28, No. 4, December, 2002, pp. 49-61.
    176.D. H. Maxwell and T. A. Kolakowski, “The
    Crystallography of Cast Turbine Airfoils”,
    TRW/DSSG/QUEST, 1980, pp. 51-71.
    177.M. Gell, and D. N. Duhl, “Processing and
    Properties of Advance High Temperature Alloys”,
    Edited by S. M. Allen et al., ASM, Metals Park,
    OH, 1986, pp. 41-49.
    178.J. D. Livingston, H. E. Cline, E. F. Koch and
    R. R. Russell, Acta Metall. 1970, 18, pp. 399.
    179.J. M. Drapier, “Progress in Advanced
    Directionally Solidification and Eutectic High
    Temperature Alloy,” High Temperature Alloys for
    Gas Turbines, Applied Science Publishers Ltd.,
    London, 1978, pp. 701-36.
    180.M. McLean, “Directionally Solidified Materials
    for High Temperature Service”, The Metals
    Society, London, 1983, pp. 108-132.
    181.A. Hellawell, “The Grain Structure of
    Castings: Some Aspects of Modeling”, Modelling
    of Casting, Welding and Advanced Solidification
    Process VIII, The Metals and Materials Society,
    1995, pp. 565-576
    182.Ph. Thévoz, J. L. Desbiolles, and M. Rappaz,
    “Modeling of Equiaxed Microstructure Formation
    in Casting”, Metallurgical Transactions A, Vol.
    20A, 1989, pp. 311-322.
    183.W. Kurz, B. Giovanola and R. Trivedi, “Theory
    of Microstructural Development during Rapid
    Solidification”, Acta Metallurgica, 34, 1986,
    pp. 823-830.
    184.J. Lipton, M. E. Glicksman, and W. Kurz,
    “Equiaxed Dendrite Growth in Alloys at Small
    Supercooling”, Metallurgical and Materials
    Transactions A, Vol. 18A, 1987, pp. 341-345.
    185.E. Chang, and J. C. Chou, “Grain Refining and
    Control for Equiaxed Turbine Blade”, Chukung,
    Vol. 51, 1986, pp. 1-19
    186.G. S. Hoppin, III, and W. P. Danesi,
    “Manufacturing Processes for Long-Life Gas
    Turbines”, Journal of Metals, July, 1986, pp.
    20-23.
    187.C. T. Sims, N. S. Stoloff, and W. C. Hagel,
    (eds.), “Superalloys II”, John Wiley & Sons,
    Inc., New York, 1987, pp. 189-214.
    188.P. N. Quested and S. Osgerby, “Mechanical
    Properties of Conventionally Cast, Directionally
    Solidified, and Single Crystal Superalloys”,
    Material Science and Technology, Vol. 2, 1986,
    pp. 461-75.
    189.M. Gell, D. N. Duhl, D. K. Gupta, and K. D.
    Sheffler, “Advanced Superalloy Airfoils”,
    Journal of Metals, 1987, pp. 11-15.
    190.F. L. Versnyder and M. E. Shank, “The
    Development of Columnar and Single Crystal High
    Temperature Materials through Directional
    Solidification”, Materials Science and
    Engineering, Vol. 6, 1970, pp. 213-47.
    191.D. C. Madeleine, “The Microstructure of
    Superalloys”, Gordon and Breach Science
    Publishers, The Netherlands, 1997, pp. 53-55.
    192.M. Gell, D. N. Duhl and A. F. Giamei, “The
    Development of Single Crystal Superalloy Turbine
    Blades”, Superalloys 1980, pp. 205-214.
    193.Ch. -A. Gandin, M. Rappaz, D. West, and B. L.
    Adams, “Grain Texture Evolution during the
    Columnar Growth of Dendritic Alloys”,
    Metallurgical and Materials Transactions A, Vol.
    26A, 1995, pp. 1543-51.
    194.J. D. Hunt, “Steady State Columnar and
    Equiaxed Growth of Dendrites and Eutectic”,
    Materials Science and Engineering, 65, 1984, pp.
    75-83.
    195.G. F. V. Voort, “Metallography- Principles and
    Practice”, 1st ed., McGraw-Hill Book
    Company,Taipei, 1984, pp. 436-437.
    196.B. DeMestral, G. Eggeler and H. J. Klam, “On
    the Influence of Grain Morphology on Creep
    Deformation and Damage Mechanisms in
    Directionally Solidified and Oxide Dispersion
    Strengthened Superalloys”, Metallurgical and
    Materials Transactions A, Vol. 27A, 1996, pp.
    879.
    197.M. S. Gopala Krishna, A. M. Sriramamurthy, and
    V. M. Radhakrishnan, “Creep Crack Growth
    Behavior at 1033K of Directionally Solidified
    CM247LC- A Cast Nickel-base Superalloy”,
    Scripta Meterialia, Vol. 35, No. 11, 1996, pp.
    1325-1330.
    198.J. Wahl, Private Communication, Cannon-Muskegon
    Corporation.
    199.李昭興, “CM247LC材料熱處理條件的訂定”, MG
    86044-1, 1997年3月.
    200.K. Harris, Private Communication,
    Cannon-Muskegon Corporation.
    201.黃信二, “CM247LC微細晶鑄造特性及機械性質研究,
    國立臺灣大學, 材料科學與工程學研究所, 2000, pp.
    37.
    202.K. S. Ho and W. S. Hwang, “Effects of Surface
    Condition and Part Orientation on the Quality of
    Vapor Phase Aluminized Coating for Nozzle
    Segment Casting of René77 Alloy”, Submitted to
    Surface Engineering.
    203.何堃森、黃文星、曾清暉, “René77合金渦輪噴嘴鑄
    件表面狀況及擺放方式對氣相鋁化鍍層品質之影響研
    究”, 材料科學與工程, 36卷1期, 2004, pp. 36-47.
    204.T. H. Wang and L. L. Seigle, “The Influence of
    Viscous Flow on the Kinetics of Gas Transport in
    Aluminizing Packs”, Proceedings of a Symposium
    on High Temperature Coatings, Metallurgical
    Society, Orlando, Florida, 1986, pp. 39-53.
    205.W. P. Sun, H. J. Lin, and M. H. Hon, “CVD
    Aluminide Nickel”, Metallurgical Transactions
    A, Vol. 17A, 1986, pp. 215-220.
    206.T. K. Redden, Trans. AIME, 242, 1968, pp. 1695.

    下載圖示 校內:2008-06-15公開
    校外:2014-06-15公開
    QR CODE