| 研究生: |
賴俊豪 Lai, Chun-Hau |
|---|---|
| 論文名稱: |
新型共路外差干涉儀於同時量測主軸方向和雙折射特性之研究與應用 Simultaneously Measuring the Principal axis and Birefringence by Using the New Common-Path Heterodyne Interferometer |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 共路外差干涉 、雙折射性 、主軸角度 、電光調變器 、同時量測 |
| 外文關鍵詞: | Nonlinear errors, Simultaneous measurement, Birefringence, Principal angles, EO-modulator, Common-path heterodyne interferometry |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
外差干涉技術是一重要的精密量測方法,據此所發展的感測系統可以在量測變化時有極佳的線性、穩定性與精密度,其應用範圍十分廣泛。另一方面,由於人們對於雙折射特性日益感到興趣,相關的量測系統大多以外差干涉為基礎,然而目前所提及關於量測材料之雙折射特性的系統中,較少具有同時量測主軸變化與雙折射特性的功能。
因此本研究提出兩種創新的系統設計,首先利用相位光柵作週期性的弦波調變及二分之一波片設計出類似賽曼雷射具雙偏極化特性的光源系統,再配合簡易的光學架構設計出新型共路外差干涉儀 ( New Common-Path Heterodyne Interferometer ) ,另外一套系統則是利用電光調變器,結合類似的光學結構,設計出另一套量測系統。此外,為達到同時量測的目標,本研究中亦同時發展一套相配合的數位訊號處理技術。結合光學量測與訊號處理以實驗證實所發展的系統可應用於同時量測具雙折射特性物質主軸角度以及其雙折射性,且結構簡單、價格低廉。
最後對於所提出的二系統分別分析其主要誤差成因,發現皆為具週期性非線性的誤差。
This study demonstrates two methods for simultaneously measuring both the angle of principal axis and the phase retardation of the linear birefringence in optical materials. First one, a transversely moving grating is utilized to modulate the light source, and operated in coordination to a half-waveplate to compose a two orthogonal polarized light with a Doppler frequency shift, such as a Zeeman laser. The other one is used a circular common-path interferometer (polariscope) as the basic structure modulated by an electro-optic (EO) modulator. On the other hand, in order to simultaneously extract the wanted results, the principal axis and the phase retardation, an algorithm was developed to achieve the goal.
Through the experimental results, these two measuring structures are further confirmed their abilities. For the Zeeman-liked system, its average absolute error of the principal axis and phase retardation are respectively approximately 3.15 % and 1.09 %. For the other one, the average absolute error of the principal axis is approximately 4.8 %, and that of the phase retardation is approximately 1.09 %. For repeatability, the average deviation for the principal axis is 0.186º and the phase retardation 0.356º. For the stability, the average deviation for the principal axis is 0.405º and the phase retardation is 0.635º. The dynamic ranges of these two new systems for principal axis is 0 to 360 degreeand phase retardation is from 0 to 90 degree.
Finally, analyzing the main error source in these two heterodyne interferometers, the thermal drift of PZT stack and the principal angular misalignment of the electro-optic modulator are found respectively. Then, a nonlinear error is discovered.
Abramowitz, M. and Stegum, I. A., Handbook of Mathematical Functions., Washington DC:Nat. But. Standards., 1963.
A. E. Rosenbluth and N. Bobroff, “Optical sources of nonlinearity in heterodyne interferometers.”, Pre. Eng. Vol. 12, No. 1, pp. 7-11, 1990.
B. Wang and T.C. Oakberg, “A New Instrument for Measuring Both the Magnitude and Angle of low level linear birefringence.” Rev. Sci. Inst. 70, pp. 3847-3854, 1999.
Cameron, B. D. and C’ote G. L., ”Noninvasive Glucose Sensing Utilizing a Digital Closed-Loop Polarimetric Approach.” IEEE Transactions on Biomedical Engineering., Vol. 44., No. 12., pp. 1221-1227, 1997.
D.C. Su, M.H. Chiu, and C. D. Chen, “Simple two frequency laser”, Prec. Eng., Vol. 18, pp. 161-163, 1996.
Dejiao Lin, Hong Jiang, Chunyong Yin, “Analysis of nonlinearity in a high-resolution grating interferometer”, Opics & Laser Technology, Vol. 32, pp. 95-99, 2000.
E. Gelmini, U. Minomi, and F. Docchio, “Tunable, double-wavelength heterodyne detection interferometer for absolute distance measurement”, Opt. Lett. Vol. 19, pp. 213-215, 1994.
Feng, C. M., Huang, Y.C., Chang, J.G., Chang, M. and Chou, C., “A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement,” Optics Comm., Vol. 141, p. 314, 1997.
H. Takasaki, N.Umeda, and M.Tsukiji, “Stabilized Transverse Zeeman laser as a new light source for optical measurement”, Appl. Opt. Vol. 19, pp. 435-441, 1980
Haus, H. A., “Waves and fields in optoelectronics”, Ch. 12, Prientice-Hall, Inc., Englewood Clifffs, New Jersey, 1984.
Hecht, “Optics”, Adisson Wesley, 3rd ed., Chapter 8, pp. 330-340., 1998.
J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long known effect”, J. Opt. Sci. Am. Vol. 59, pp. 950-954, 1969.
J. M. De Freitas and M.A. Player, “Importance of rotational beam alignment in the generation of second harmonic errors in laser heterodyne interferometry”, Meas. Sci. Tech. Vol. 4, pp. 1173-1176, 1993.
J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter”, Meas. Sci. Tech. Vol. 14, pp. 55-58, 2003.
Kothiyal, M. P. and Delisle, C., “Optical frequency shifter for heterodyne interferometry using coumterrotating wave plates.” Opt. Lett., Vol. 9., pp. 319-321, 1984.
Lo, Y.L. and Hsu, P.F., “Birefringence Measurements by an Electro-Optic Modulator using a New Heterodyne Scheme,” SPIE, Optical Engineering, Vol. 41, No.11, pp. 2764-2767, NOV. 2002.
M. G. Gazalet, M. Raveg, F. Haine, et al. “Acousto-optic low frequency shifter”, Appl. Opt., Vol. 33, pp. 1293-1298, 1994.
Norman Bobroff, “Resent advances in displacement measuring interferometry.”, Meas. Sci. Tech. Vol. 4, pp. 907-926,1993.
Ohkubo S and Umeda N, ”Near-field Scanning Optical Microscope based on FAST Birefringence Measurements”, Sensors and Materials., Vol. 13, No.8, pp. 433-443, 2001.
Serrze, H. B. and Goldner, R. B., ”A Phase-Sensitive Technique for Measuring Small Birefringence Changes, ” Rev. Sci. Instrum., Vol. 45, p. 1613., 1974
Shindo, Yohji and Hanabusa, Hiroshi, ”Highly Sensitive Instrument for Measuring Optical Birefringence,” Polymer Communications, Vol. 24, p. 240., 1983.
Suits, J. C., “Magneto-optical rotation and ellipticity measurements with a spinning analyzer.”, Rev. Sci. Instrum., Vol. 42., pp. 19-22, 1971.
T. Suzuki and R. Hioki, “Translation of light frequency by moving grating”, J. Opt. Soc. Am., Vol. 57, p. 1551, 1967.
Wenmei Hou, Gunter Wilkening, “Investigation and compensation of nonlinearity of heterodyne interferometers.”, Pre. Eng. Vol. 14 No. 2, pp. 91-98, 1992.
Wickramasingle, H. K., “Laser Heterodyne Probes”, Optical Metrology, NATO ASI series, 1987.
William, A. Shurcliff., Polarized Light., Cambridge, 1962.
Yariv, A. and Yeh, P., “Optical Waves in Crystal”, John Wiley&Sons, Inc., Ch. 4, 1984.
郭彥珍, 邱宗明, 李信, “激光偏振干涉光路的分線性分析計算”, 計量學報, Vol. 16, No.4, Oct., 1995.
陳應誠, “電光晶體調制外差式干涉儀與其非線性誤差之消減”,國立清華大學物理研究所碩士論文, 1995.
游展汶,“以旋光外差干涉術測量雙折射晶體之尋常光及非尋常光折射率”,國立交通大學光電工程研究所碩士論文, 2000.
趙慧洁, “外差干涉儀頻率混疊誤差分析”, 計量學報, Vol. 20, No.3, July, 1999.